Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Gawel, Danuta R."
Sort by:
Digital twins to personalize medicine
Personalized medicine requires the integration and processing of vast amounts of data. Here, we propose a solution to this challenge that is based on constructing Digital Twins. These are high-resolution models of individual patients that are computationally treated with thousands of drugs to find the drug that is optimal for the patient.
A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets
Background Medical digital twins are computational disease models for drug discovery and treatment. Unresolved problems include how to organize and prioritize between disease-associated changes in digital twins, on cellulome- and genome-wide scales. We present a dynamic framework that can be used to model such changes and thereby prioritize upstream regulators (URs) for biomarker- and drug discovery. Methods We started with seasonal allergic rhinitis (SAR) as a disease model, by analyses of in vitro allergen-stimulated peripheral blood mononuclear cells (PBMC) from SAR patients. Time-series a single-cell RNA-sequencing (scRNA-seq) data of these cells were used to construct multicellular network models (MNMs) at each time point of molecular interactions between cell types. We hypothesized that predicted molecular interactions between cell types in the MNMs could be traced to find an UR gene, at an early time point. We performed bioinformatic and functional studies of the MNMs to develop a scalable framework to prioritize UR genes. This framework was tested on a single-cell and bulk-profiling data from SAR and other inflammatory diseases. Results Our scRNA-seq-based time-series MNMs of SAR showed thousands of differentially expressed genes (DEGs) across multiple cell types, which varied between time points. Instead of a single-UR gene in each MNM, we found multiple URs dispersed across the cell types. Thus, at each time point, the MNMs formed multi-directional networks. The absence of linear hierarchies and time-dependent variations in MNMs complicated the prioritization of URs. For example, the expression and functions of Th2 cytokines, which are approved drug targets in allergies, varied across cell types, and time points. Our analyses of bulk- and single-cell data from other inflammatory diseases also revealed multi-directional networks that showed stage-dependent variations. We therefore developed a quantitative approach to prioritize URs: we ranked the URs based on their predicted effects on downstream target cells. Experimental and bioinformatic analyses supported that this kind of ranking is a tractable approach for prioritizing URs. Conclusions We present a scalable framework for modeling dynamic changes in digital twins, on cellulome- and genome-wide scales, to prioritize UR genes for biomarker and drug discovery.
An algorithm-based meta-analysis of genome- and proteome-wide data identifies a combination of potential plasma biomarkers for colorectal cancer
Screening programs for colorectal cancer (CRC) often rely on detection of blood in stools, which is unspecific and leads to a large number of colonoscopies of healthy subjects. Painstaking research has led to the identification of a large number of different types of biomarkers, few of which are in general clinical use. Here, we searched for highly accurate combinations of biomarkers by meta-analyses of genome- and proteome-wide data from CRC tumors. We focused on secreted proteins identified by the Human Protein Atlas and used our recently described algorithms to find optimal combinations of proteins. We identified nine proteins, three of which had been previously identified as potential biomarkers for CRC, namely CEACAM5, LCN2 and TRIM28. The remaining proteins were PLOD1, MAD1L1, P4HA1, GNS, C12orf10 and P3H1. We analyzed these proteins in plasma from 80 patients with newly diagnosed CRC and 80 healthy controls. A combination of four of these proteins, TRIM28, PLOD1, CEACAM5 and P4HA1, separated a training set consisting of 90% patients and 90% of the controls with high accuracy, which was verified in a test set consisting of the remaining 10%. Further studies are warranted to test our algorithms and proteins for early CRC diagnosis.
Meta-Analysis of Expression Profiling Data Indicates Need for Combinatorial Biomarkers in Pediatric Ulcerative Colitis
Background. Unbiased studies using different genome-wide methods have identified a great number of candidate biomarkers for diagnosis and treatment response in pediatric ulcerative colitis (UC). However, clinical translation has been proven difficult. Here, we hypothesized that one reason could be differences between inflammatory responses in an inflamed gut and in peripheral blood cells. Methods. We performed meta-analysis of gene expression microarray data from intestinal biopsies and whole blood cells (WBC) from pediatric patients with UC and healthy controls in order to identify overlapping pathways, predicted upstream regulators, and potential biomarkers. Results. Analyses of profiling datasets from colonic biopsies showed good agreement between different studies regarding pathways and predicted upstream regulators. The most activated predicted upstream regulators included TNF, which is known to have a key pathogenic and therapeutic role in pediatric UC. Despite this, the expression levels of TNF were increased in neither colonic biopsies nor WBC. A potential explanation was increased expression of TNFR2, one of the membrane-bound receptors of TNF in the inflamed colon. Further analyses showed a similar pattern of complex relations between the expression levels of the regulators and their receptors. We also found limited overlap between pathways and predicted upstream regulators in colonic biopsies and WBC. An extended search including all differentially expressed genes that overlapped between colonic biopsies and WBC only resulted in identification of three potential biomarkers involved in the regulation of intestinal inflammation. However, two had been previously proposed in adult inflammatory bowel diseases (IBD), namely, MMP9 and PROK2. Conclusions. Our findings indicate that biomarker identification in pediatric UC is complicated by the involvement of multiple pathways, each of which includes many different types of genes in the blood or inflamed intestine. Therefore, further studies for identification of combinatorial biomarkers are warranted. Our study may provide candidate biomarkers for such studies.
LASSIM—A network inference toolbox for genome-wide mechanistic modeling
Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE) for gene regulatory networks (GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models with truly systems-level data. We demonstrate the power of this approach by inferring a mechanistically motivated, genome-wide model of the Th2 transcription regulatory system, which plays an important role in several immune related diseases.
A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases
Background Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs. Methods The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs. Results We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model. Conclusions Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease.
Potential Involvement of Type I Interferon Signaling in Immunotherapy in Seasonal Allergic Rhinitis
Specific immunotherapy (SIT) reverses the symptoms of seasonal allergic rhinitis (SAR) in most patients. Recent studies report type I interferons shifting the balance between type I T helper cell (Th1) and type II T helper cells (Th2) towards Th2 dominance by inhibiting the differentiation of naive T cells into Th1 cells. As SIT is thought to cause a shift towards Th1 dominance, we hypothesized that SIT would alter interferon type I signaling. To test this, allergen and diluent challenged CD4+ T cells from healthy controls and patients from different time points were analyzed. The initial experiments focused on signature genes of the pathway and found complex changes following immunotherapy, which were consistent with our hypothesis. As interferon signaling involves multiple genes, expression profiling studies were performed, showing altered expression of the pathway. These findings require validation in a larger group of patients in further studies.
Identification of Genes and Regulators That Are Shared Across T Cell Associated Diseases
Genome-wide association studies (GWASs) of hundreds of diseases and millions of patients have led to the identification of genes that are associated with more than one disease. The aims of this PhD thesis were to a) identify a group of genes important in multiple diseases (shared disease genes), b) identify shared up-stream disease regulators, and c) determine how the same genes can be involved in the pathogenesis of different diseases. These aims have been tested on CD4+ T cells because they express the T helper cell differentiation pathway, which was the most enriched pathway in analyses of all disease associated genes identified with GWASs.Combining information about known gene-gene interactions from the protein-protein interaction (PPI) network with gene expression changes in multiple T cell associated diseases led to the identification of a group of highly interconnected genes that were miss-expressed in many of those diseases – hereafter called ‘shared disease genes’. Those genes were further enriched for inflammatory, metabolic and proliferative pathways, genetic variants identified by all GWASs, as well as mutations in cancer studies and known diagnostic and therapeutic targets. Taken together, these findings supported the relevance of the shared disease genes.Identification of the shared upstream disease regulators was addressed in the second project of this PhD thesis. The underlying hypothesis assumed that the determination of the shared upstream disease regulators is possible through a network model showing in which order genes activate each other. For that reason a transcription factor–gene regulatory network (TF-GRN) was created. The TF-GRN was based on the time-series gene expression profiling of the T helper cell type 1 (Th1), and T helper cell type 2 (Th2) differentiation from Naïve T-cells. Transcription factors (TFs) whose expression changed early during polarization and had many downstream predicted targets (hubs) that were enriched for disease associated single nucleotide polymorphisms (SNPs) were prioritised as the putative early disease regulators. These analyses identified three transcription factors: GATA3, MAF and MYB. Their predicted targets were validated by ChIP-Seq and siRNA mediated knockdown in primary human T-cells. CD4+ T cells isolated from seasonal allergic rhinitis (SAR) and multiple sclerosis (MS) patients in their non-symptomatic stages were analysed in order to demonstrate predictive potential of those three TFs. We found that those three TFs were differentially expressed in symptom-free stages of the two diseases, while their TF-GRN–predicted targets were differentially expressed during symptomatic disease stages. Moreover, using RNA-Seq data we identified a disease associated SNP that correlated with differential splicing of GATA3.A limitation of the above study is that it concentrated on TFs as main regulators in cells, excluding other potential regulators such as microRNAs. To this end, a microRNA–gene regulatory network (mGRN) of human CD4+ T cell differentiation was constructed. Within this network, we defined regulatory clusters (groups of microRNAs that are regulating groups of mRNAs). One regulatory cluster was differentially expressed in all of the tested diseases, and was highly enriched for GWAS SNPs. Although the microRNA processing machinery was dynamically upregulated during early T-cell activation, the majority of microRNA modules showed specialisation in later time–points.In summary this PhD thesis shows the relevance of shared genes and up-stream disease regulators. Putative mechanisms of why shared genes can be involved in pathogenesis of different diseases have also been demonstrated: a) differential gene expression in different diseases; b) alternative transcription factor splicing variants may affect different downstream gene target group; and c) SNPs might cause alternative splicing.