Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
355 result(s) for "Gaynor, D."
Sort by:
Vibronic coherence evolution in multidimensional ultrafast photochemical processes
The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm −1 coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates. Energy transfer in light harvesting complexes involves electronic, vibrational, and vibronic couplings which are challenging to resolve. Here the authors observe the time-evolution of vibronic coherences driving charge transfer in a photoexcited solvated transition metal complex by two- and three-dimensional electronic-vibrational spectroscopy.
Direct observation of coherent femtosecond solvent reorganization coupled to intramolecular electron transfer
It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute–solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120–200 cm−1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.Solvent plays a critical role in electron-transfer reactions, but short-range solvation dynamics are challenging to observe. Now, femtosecond X-ray solution scattering has been used to directly monitor the reorganization of water upon ultrafast intramolecular electron transfer in a bimetallic complex. Coherent motions of the first-shell water molecules are observed, arising from changes in solute–solvent hydrogen bonding.
Dead or alive? Comparing costs and benefits of lethal and non-lethal human–wildlife conflict mitigation on livestock farms
Livestock depredation has implications for conservation and agronomy; it can be costly for farmers and can prompt retaliatory killing of carnivores. Lethal control measures are readily available and are reportedly perceived to be cheaper, more practical and more effective than non-lethal methods. However, the costs and efficacy of lethal vs non-lethal approaches have rarely been compared formally. We conducted a 3-year study on 11 South African livestock farms, examining costs and benefits of lethal and non-lethal conflict mitigation methods. Farmers used existing lethal control in the first year and switched to guardian animals (dogs Canis familiaris and alpacas Lama pacos) or livestock protection collars for the following 2 years. During the first year the mean cost of livestock protection was USD 3.30 per head of stock and the mean cost of depredation was USD 20.11 per head of stock. In the first year of non-lethal control the combined implementation and running costs were similar to those of lethal control (USD 3.08 per head). However, the mean cost of depredation decreased by 69.3%, to USD 6.52 per head. In the second year of non-lethal control the running costs (USD 0.43 per head) were significantly lower than in previous years and depredation costs decreased further, to USD 5.49 per head. Our results suggest that non-lethal methods of human–wildlife conflict mitigation can reduce depredation and can be economically advantageous compared to lethal methods of predator control.
Sensitivity and specificity of computer vision classification of eyelid photographs for programmatic trachoma assessment
Trachoma programs base treatment decisions on the community prevalence of the clinical signs of trachoma, assessed by direct examination of the conjunctiva. Automated assessment could be more standardized and more cost-effective. We tested the hypothesis that an automated algorithm could classify eyelid photographs better than chance. A total of 1,656 field-collected conjunctival images were obtained from clinical trial participants in Niger and Ethiopia. Images were scored for trachomatous inflammation-follicular (TF) and trachomatous inflammation-intense (TI) according to the simplified World Health Organization grading system by expert raters. We developed an automated procedure for image enhancement followed by application of a convolutional neural net classifier for TF and separately for TI. One hundred images were selected for testing TF and TI, and these images were not used for training. The agreement score for TF and TI tasks for the automated algorithm relative to expert graders was κ = 0.44 (95% CI: 0.26 to 0.62, P < 0.001) and κ = 0.69 (95% CI: 0.55 to 0.84, P < 0.001), respectively. For assessing the clinical signs of trachoma, a convolutional neural net performed well above chance when tested against expert consensus. Further improvements in specificity may render this method suitable for field use.
Elimination and Eradication of Neglected Tropical Diseases with Mass Drug Administrations: A Survey of Experts
Lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths, and trachoma are the five most prevalent neglected tropical diseases in the world, and each is frequently treated with mass drug administrations. We performed a survey of neglected tropical diseases experts to elicit their opinions on the role of mass drug administrations for the elimination of these infections. We sent an online survey to corresponding authors who had published an article about a neglected tropical disease from 2007 to 2011. Of 825 unique authors who were invited to complete the survey, 365 (44.2%) responded, including 234 (28.4%) who answered questions regarding one of the five most prevalent neglected tropical diseases. Respondents had varying opinions about the goals of programmatic activities for their chosen neglected tropical disease, with elimination or eradication identified as the most important goal by 87% of lymphatic filariasis respondents, 66% of onchocerciasis respondents, 55% of trachoma respondents, 24% of schistosomiasis respondents, and 21% of soil-transmitted helminth respondents. Mass drug administrations, other non-medication health measures, and education were generally thought to be more important for elimination than vector control, development of a new tool, or the presence of a secular trend. Drug resistance was thought to be a major limitation of mass drug administrations for all five neglected tropical diseases. Over half of respondents for lymphatic filariasis and trachoma thought that repeated mass drug administrations could eliminate infection within ten years of the initiation of mass treatments. Respondents for lymphatic filariasis, onchocerciasis, and trachoma were more enthusiastic about the prospects of elimination and eradication than were respondents for schistosomiasis or soil-transmitted helminths. Mass drug administrations were generally believed to be among the most important factors for the success of elimination efforts for each of the five neglected tropical diseases, highlighting the opportunity for integrating drug distributions.
Antibiotic Selection Pressure and Macrolide Resistance in Nasopharyngeal Streptococcus pneumoniae: A Cluster-Randomized Clinical Trial
It is widely thought that widespread antibiotic use selects for community antibiotic resistance, though this has been difficult to prove in the setting of a community-randomized clinical trial. In this study, we used a randomized clinical trial design to assess whether macrolide resistance was higher in communities treated with mass azithromycin for trachoma, compared to untreated control communities. In a cluster-randomized trial for trachoma control in Ethiopia, 12 communities were randomized to receive mass azithromycin treatment of children aged 1-10 years at months 0, 3, 6, and 9. Twelve control communities were randomized to receive no antibiotic treatments until the conclusion of the study. Nasopharyngeal swabs were collected from randomly selected children in the treated group at baseline and month 12, and in the control group at month 12. Antibiotic susceptibility testing was performed on Streptococcus pneumoniae isolated from the swabs using Etest strips. In the treated group, the mean prevalence of azithromycin resistance among all monitored children increased from 3.6% (95% confidence interval [CI] 0.8%-8.9%) at baseline, to 46.9% (37.5%-57.5%) at month 12 (p = 0.003). In control communities, azithromycin resistance was 9.2% (95% CI 6.7%-13.3%) at month 12, significantly lower than the treated group (p < 0.0001). Penicillin resistance was identified in 0.8% (95% CI 0%-4.2%) of isolates in the control group at 1 year, and in no isolates in the children-treated group at baseline or 1 year. This cluster-randomized clinical trial demonstrated that compared to untreated control communities, nasopharyngeal pneumococcal resistance to macrolides was significantly higher in communities randomized to intensive azithromycin treatment. Mass azithromycin distributions were given more frequently than currently recommended by the World Health Organization's trachoma program. Azithromycin use in this setting did not select for resistance to penicillins, which remain the drug of choice for pneumococcal infections. www.ClinicalTrials.gov NCT00322972. Please see later in the article for the Editors' Summary.
Evidence for Clonal Expansion After Antibiotic Selection Pressure: Pneumococcal Multilocus Sequence Types Before and After Mass Azithromycin Treatments
Background. A clinical trial of mass azithromycin distributions for trachoma created a convenient experiment to test the hypothesis that antibiotic use selects for clonal expansion of preexisting resistant bacterial strains. Methods. Twelve communities in Ethiopia received mass azithromycin distributions every 3 months for 1 year. A random sample of 10 children aged 0-9 years from each community was monitored by means of nasopharyngeal swab sampling before mass azithromycin distribution and after 4 mass treatments. Swab specimens were tested for Streptococcus pneumoniae, and isolates underwent multilocus sequence typing. Results. Of 82 pneumococcal isolates identified before treatment, 4 (5%) exhibited azithromycin resistance, representing 3 different sequence types (STs): 177,6449, and 6494. The proportion of isolates that were classified as one of these 3 STs and were resistant to azithromycin increased after 4 mass azithromycin treatments (14 of 96 isolates [15%]; P= .04). Using a classification index, we found evidence for a relationship between ST and macrolide resistance after mass treatments (P< .0001). The diversity of STs— as calculated by the unbiased Simpson index— decreased significantly after mass azithromycin treatment (P = .045). Conclusions. Resistant clones present before mass azithromycin treatments increased in frequency after treatment, consistent with the theory that antibiotic selection pressure results in clonal expansion of existing resistant strains.
The Decline of Pneumococcal Resistance after Cessation of Mass Antibiotic Distributions for Trachoma
After 6 biannual mass distributions of oral azithromycin for trachoma in Ethiopian communities, 76.8% (95% confidence interval [CI], 66.3%–85.1%) of nasopharyngeal Streptococcus pneumoniae isolates from children aged 1–5 years were resistant to macrolides. Twelve and 24 months after the last azithromycin treatment, resistance decreased to 30.6% (95% CI, 18.8%–40.4%; P < .001) and 20.8% (95% CI, 12.7%–30.7%; P < .001), respectively. Macrolide resistance decreases after antibiotic pressure is removed.
Assessment of herd protection against trachoma due to repeated mass antibiotic distributions: a cluster-randomised trial
Trachoma-control programmes distribute oral azithromycin to treat the ocular strains of chlamydia that cause the disease and to control infection. Theoretically, elimination of infection is feasible if untreated individuals receive an indirect protective effect from living in repeatedly treated communities, which is similar to herd protection in vaccine programmes. We assessed indirect protection against trachoma with mass azithromycin distributions. In a cluster randomised trial, 24 subkebeles (government-defined units) in Amhara, Ethiopia, were randomised, with use of a simple random sample, to distribution four times per year of single-dose oral azithromycin to children aged 1–10 years (12 subkebeles, 4764 children), or to delayed treatment until after the study (control; 12 subkebeles, 6014 children). We compared the prevalence of ocular chlamydial infection in untreated individuals 11 years and older between baseline and 12 months in the treated subkebeles, and at 12 months between the treated and control subkebeles. Health-care and laboratory personnel were blinded to study group. Analysis was intention to treat. The study is registered with clinicaltrials.gov, number NCT00322972. At 12 months, 637 children aged 1–10 years and 561 adults and children aged 11 years and older were analysed in the children-treated group, and 618 and 550, respectively, in the control group. The mean prevalence of infection in children decreased from 48·4% (95% CI 42·9–53·9) to 3·6% (0·8–6·4) after four mass treatments. At 12 months, the mean prevalence of infection in the untreated age group (≥11 years) was 47% (95% CI 33–57) less than baseline (p=0·002), and 35% (95% CI 1–57) less than that in untreated communities (p=0·04). Frequent treatment of children, who are a core group for transmission of trachoma, could eventually eliminate infection from the entire community. Herd protection is offered by repeated mass antibiotic treatments, providing a strategy for elimination of a bacterial disease when an effective vaccine is unavailable. National Institutes of Health.
Community-level chlamydial serology for assessing trachoma elimination in trachoma-endemic Niger
Program decision-making for trachoma elimination currently relies on conjunctival clinical signs. Antibody tests may provide additional information on the epidemiology of trachoma, particularly in regions where it is disappearing or elimination targets have been met. A cluster-randomized trial of mass azithromycin distribution strategies for trachoma elimination was conducted over three years in a mesoendemic region of Niger. Dried blood spots were collected from a random sample of children aged 1-5 years in each of 24 study communities at 36 months after initiation of the intervention. A multiplex bead assay was used to test for antibodies to two Chlamydia trachomatis antigens, Pgp3 and CT694. We compared seropositivity to either antigen to clinical signs of active trachoma (trachomatous inflammation-follicular [TF] and trachomatous inflammation-intense [TI]) at the individual and cluster level, and to ocular chlamydia prevalence at the community level. Of 988 children with antibody data, TF prevalence was 7.8% (95% CI 6.1 to 9.5) and TI prevalence was 1.6% (95% CI 0.9 to 2.6). The overall prevalence of antibody positivity to Pgp3 was 27.2% (95% CI 24.5 to 30), and to CT694 was 23.7% (95% CI 21 to 26.2). Ocular chlamydia infection prevalence was 5.2% (95% CI 2.8 to 7.6). Seropositivity to Pgp3 and/or CT694 was significantly associated with TF at the individual and community level and with ocular chlamydia infection and TI at the community level. Older children were more likely to be seropositive than younger children. Seropositivity to Pgp3 and CT694 correlates with clinical signs and ocular chlamydia infection in a mesoendemic region of Niger. ClinicalTrials.gov NCT00792922.