Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Gege, Peter"
Sort by:
Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon
2020
The recent PlanetScope constellation (130+ satellites currently in orbit) has shifted the high spatial resolution imaging into a new era by capturing the Earth’s landmass including inland waters on a daily basis. However, studies on the aquatic-oriented applications of PlanetScope imagery are very sparse, and extensive research is still required to unlock the potentials of this new source of data. As a first fully physics-based investigation, we aim to assess the feasibility of retrieving bathymetric and water quality information from the PlanetScope imagery. The analyses are performed based on Water Color Simulator (WASI) processor in the context of a multitemporal analysis. The WASI-based radiative transfer inversion is adapted to process the PlanetScope imagery dealing with the low spectral resolution and atmospheric artifacts. The bathymetry and total suspended matter (TSM) are mapped in the relatively complex environment of Venice lagoon during two benchmark events: The coronavirus disease 2019 (COVID-19) lockdown and an extreme flood occurred in November 2019. The retrievals of TSM imply a remarkable reduction of the turbidity during the lockdown, due to the COVID-19 pandemic and capture the high values of TSM during the flood condition. The results suggest that sizable atmospheric and sun-glint artifacts should be mitigated through the physics-based inversion using the surface reflectance products of PlanetScope imagery. The physics-based inversion demonstrated high potentials in retrieving both bathymetry and TSM using the PlanetScope imagery.
Journal Article
Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes
2021
Different methods are available for retrieving chlorophyll-a (Chl-a) in inland waters from optical imagery, but there is still a need for an inter-comparison among the products. Such analysis can provide insights into the method selection, integration of products, and algorithm development. This work aims at inter-comparison and consistency analyses among the Chl-a products derived from publicly available methods consisting of Case-2 Regional/Coast Colour (C2RCC), Water Color Simulator (WASI), and OC3 (3-band Ocean Color algorithm). C2RCC and WASI are physics-based processors enabling the retrieval of not only Chl-a but also total suspended matter (TSM) and colored dissolved organic matter (CDOM), whereas OC3 is a broadly used semi-empirical approach for Chl-a estimation. To pursue the inter-comparison analysis, we demonstrate the application of Sentinel-2 imagery in the context of multitemporal retrieval of constituents in some Italian lakes. The analysis is performed for different bio-optical conditions including subalpine lakes in Northern Italy (Garda, Idro, and Ledro) and a turbid lake in Central Italy (Lake Trasimeno). The Chl-a retrievals are assessed versus in situ matchups that indicate the better performance of WASI. Moreover, relative consistency analyses are performed among the products (Chl-a, TSM, and CDOM) derived from different methods. In the subalpine lakes, the results indicate a high consistency between C2RCC and WASI when aCDOM(440) < 0.5 m−1, whereas the retrieval of constituents, particularly Chl-a, is problematic based on C2RCC for high-CDOM cases. In the turbid Lake Trasimeno, the extreme neural network of C2RCC provided more consistent products with WASI than the normal network. OC3 overestimates the Chl-a concentration. The flexibility of WASI in the parametrization of inversion allows for the adaptation of the method for different optical conditions. The implementation of WASI requires more experience, and processing is time demanding for large lakes. This study elaborates on the pros and cons of each method, providing guidelines and criteria on their use.
Journal Article
Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2
by
Bresciani, Mariano
,
Giardino, Claudia
,
Bovolo, Francesca
in
Case studies
,
Chlorophyll
,
chlorophyll-a
2022
The Landsat series has marked the history of Earth observation by performing the longest continuous imaging program from space. The recent Landsat-9 carrying Operational Land Imager 2 (OLI-2) captures a higher dynamic range than sensors aboard Landsat-8 or Sentinel-2 (14-bit vs. 12-bit) that can potentially push forward the frontiers of aquatic remote sensing. This potential stems from the enhanced radiometric resolution of OLI-2, providing higher sensitivity over water bodies that are usually low-reflective. This study performs an initial assessment on retrieving water quality parameters from Landsat-9 imagery based on both physics-based and machine learning modeling. The concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM) are retrieved based on physics-based inversion in four Italian lakes encompassing oligo to eutrophic conditions. A neural network-based regression model is also employed to derive Chl-a concentration in San Francisco Bay. We perform a consistency analysis between the constituents derived from Landsat-9 and near-simultaneous Sentinel-2 imagery. The Chl-a and TSM retrievals are validated using in situ matchups. The results indicate relatively high consistency among the water quality products derived from Landsat-9 and Sentinel-2. However, the Landsat-9 constituent maps show less grainy noise, and the matchup validation indicates relatively higher accuracies obtained from Landsat-9 (e.g., TSM R2 of 0.89) compared to Sentinel-2 (R2 = 0.71). The improved constituent retrieval from Landsat-9 can be attributed to the higher signal-to-noise (SNR) enabled by the wider dynamic range of OLI-2. We performed an image-based SNR estimation that confirms this assumption.
Journal Article
Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake
by
Dörnhöfer, Katja
,
Pflug, Bringfried
,
Oppelt, Natascha
in
Aquatic plants
,
atmospheric correction
,
Backscattering
2016
Satellite remote sensing may assist in meeting the needs of lake monitoring. In this study, we aim to evaluate the potential of Sentinel-2 to assess and monitor water constituents and bottom characteristics of lakes at spatio-temporal synoptic scales. In a field campaign at Lake Starnberg, Germany, we collected validation data concurrently to a Sentinel-2A (S2-A) overpass. We compared the results of three different atmospheric corrections, i.e., Sen2Cor, ACOLITE and MIP, with in situ reflectance measurements, whereof MIP performed best (r = 0.987, RMSE = 0.002 sr−1). Using the bio-optical modelling tool WASI-2D, we retrieved absorption by coloured dissolved organic matter (aCDOM(440)), backscattering and concentration of suspended particulate matter (SPM) in optically deep water; water depths, bottom substrates and aCDOM(440) were modelled in optically shallow water. In deep water, SPM and aCDOM(440) showed reasonable spatial patterns. Comparisons with in situ data (mean: 0.43 m−1) showed an underestimation of S2-A derived aCDOM(440) (mean: 0.14 m−1); S2-A backscattering of SPM was slightly higher than backscattering from in situ data (mean: 0.027 m−1 vs. 0.019 m−1). Chlorophyll-a concentrations (~1 mg·m−3) of the lake were too low for a retrieval. In shallow water, retrieved water depths exhibited a high correlation with echo sounding data (r = 0.95, residual standard deviation = 0.12 m) up to 2.5 m (Secchi disk depth: 4.2 m), though water depths were slightly underestimated (RMSE = 0.56 m). In deeper water, Sentinel-2A bands were incapable of allowing a WASI-2D based separation of macrophytes and sediment which led to erroneous water depths. Overall, the results encourage further research on lakes with varying optical properties and trophic states with Sentinel-2A.
Journal Article
Spectral and Radiometric Measurement Requirements for Inland, Coastal and Reef Waters
2020
This paper studies the measurement requirements of spectral resolution and radiometric sensitivity to enable the quantitative determination of water constituents and benthic parameters for the majority of optically deep and optically shallow waters on Earth. The spectral and radiometric variability is investigated by simulating remote sensing reflectance (Rrs) spectra of optically deep water for twelve inland water scenarios representing typical and extreme concentration ranges of phytoplankton, colored dissolved organic matter and non-algal particles. For optically shallow waters, Rrs changes induced by variable water depth are simulated for fourteen bottom substrate types, from lakes to coastal waters and coral reefs. The required radiometric sensitivity is derived for the conditions that the spectral shape of Rrs should be resolvable with a quantization of 100 levels and that measurable reflection differences at at least one wavelength must occur at concentration changes in water constituents of 10% and depth differences of 20 cm. These simulations are also used to derive the optimal spectral resolution and the most sensitive wavelengths. Finally, the Rrs spectra and their changes are converted to radiances and radiance differences in order to derive sensor (noise-equivalent radiance) and measurement requirements (signal-to-noise ratio) at the water surface and at the top of the atmosphere for a range of solar zenith angles.
Journal Article
Retrieval of Water Constituents from Hyperspectral In-Situ Measurements under Variable Cloud Cover—A Case Study at Lake Stechlin (Germany)
by
Nejstgaard, Jens
,
Grossart, Hans-Peter
,
Göritz, Anna
in
Absorption
,
Absorptivity
,
Airborne sensing
2018
Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a) concentration and colored dissolved organic matter (CDOM) absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM), Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring.
Journal Article
Airborne Remote Sensing for Environmental and Disaster Management Applications
2025
As a national research institution, the German Aerospace Center (DLR) has the largest fleet of research aircraft in Europe and uses optical imaging systems to provide a valuable research basis for a wide range of applications in the fields of environment and climate, as well as global disaster management. Airborne remote sensing provides an independent database and is essential for developing and validating methods for satellite-based systems. This article gives a brief insight into the current research topics of DLR’s Earth Observation Center (EOC) with a focus on airborne remote sensing with regard to methane source analysis, water remote sensing, forestry, urban energy management and current disaster management missions, and shows how airborne remote sensing can contribute to the understanding and management of climate change.
Journal Article
Nuclear translocation of mitochondrial dehydrogenases as an adaptive cardioprotective mechanism
2023
Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.
Chemotherapy can cause severe damage to cardiomyocytes in some patients but it is unclear how cardiomyocytes protect themselves against such stress. Here the authors show that cardiomyocytes initiate an endogenous protective response when exposed to chemotherapeutic agents by translocating mitochondrial enzymes to the nucleus.
Journal Article