Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
111 result(s) for "Geiger, Sebastian"
Sort by:
Channeling is a distinct class of dissolution in complex porous media
The traditional model of solid dissolution in porous media consists of three dissolution regimes (uniform, compact, wormhole)—or patterns—that are established depending on the relative dominance of reaction rate, flow, and diffusion. In this work, we investigate the evolution of pore structure using numerical simulations during acid injection on two models of increasing complexity. We investigate the boundaries between dissolution regimes and characterize the existence of a fourth dissolution regime called channeling, where initially fast flow pathways are preferentially widened by dissolution. Channeling occurs in cases where the distribution in pore throat size results in orders of magnitude differences in flow rate for different flow pathways. This focusing of dissolution along only dominant flow paths induces an immediate, large change in permeability with a comparatively small change in porosity, resulting in a porosity–permeability relationship unlike any that has been previously seen. This work suggests that the traditional conceptual model of dissolution regimes must be updated to incorporate the channeling regime for reliable forecasting of dissolution in applications like geothermal energy production and geologic carbon storage.
Comprehensive comparison of pore-scale models for multiphase flow in porous media
Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models for multiphase flows have seen rapid development in recent years and are becoming increasingly useful as predictive tools in both academic and industrial applications. However, quantitative comparisons between different pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison, we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 participating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension, finger width, and displacement efficiency.We find that no single method excels across all conditions and that thin films and corner flow present substantial modeling and computational challenges.
Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media
Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid−fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces. Significance Fluid displacement processes in carbonate rocks are important because they host over 50% of the world's hydrocarbon reserves and are aquifers supplying water to one quarter of the global population. A previously unidentified pore-scale fluid displacement event, droplet fragmentation, is described that occurs during the flow of two immiscible fluids specifically in carbonate rocks. The complex, heterogeneous pore structure of carbonate rocks induces this droplet fragmentation process, which explains the increased recovery of the nonwetting phase from porous carbonates as the wetting phase injection rate is increased. The previously unidentified displacement mechanism has implications for ( i ) enhanced oil recovery, ( ii ) remediation of nonaqueous liquid contaminants in aquifers, and ( iii ) subsurface CO ₂ storage.
Non-Fourier thermal transport in fractured geological media
In a similar way to solute transport, heat transfer in porous media is governed by advection and dispersion processes, and “non‐Fourier” behavior, characterized by early breakthrough and long tailing, might also be expected to occur. While “non‐Fickian” solute transport has been studied extensively and an effective mathematical framework (the Continuous Time Random Walk (CTRW)) has been developed to describe it, there has been little experimental or numerical investigation of non‐Fourier thermal transfer in porous media. As a result of different transfer rates for heat and solute transport, it is unclear if non‐Fourier may occur or when it can be adequately modeled by an advection‐diffusion equation. We conducted high‐resolution finite element–finite volume numerical simulations of heat transfer in two geologically realistic fractured porous domains. We calculated thermal breakthrough curves at various locations in the domains and analyzed them with a CTRW model adapted for heat transfer. Our analysis shows that heat transport in the first, well‐connected fracture network is Fourier‐like, even though the thermal front is highly irregular. Consequently, it can be modeled by an advection‐diffusion equation using macroscopic dispersivities. By contrast, heat transport in the second, poorly connected fracture pattern is highly non‐Fourier. Hence, the classical advection‐diffusion equation is unable to capture the main features, but they can be modeled successfully by CTRW. The occurrence of non‐Fourier behavior has important implications for a range of processes including geothermal reservoir engineering, radioactive waste storage, and enhanced oil recovery.
Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany
Background Despite strong recommendations for colorectal cancer (CRC) screening, participation rates are low. Understanding factors that affect screening choices is essential to developing future screening strategies. Therefore, this study assessed patient willingness to use non-invasive stool or blood based screening tests after refusing colonoscopy. Methods Participants were recruited during regular consultations. Demographic, health, psychological and socioeconomic factors were recorded. All subjects were advised to undergo screening by colonoscopy. Subjects who refused colonoscopy were offered a choice of non-invasive tests. Subjects who selected stool testing received a collection kit and instructions; subjects who selected plasma testing had a blood draw during the office visit. Stool samples were tested with the Hb/Hp Complex Elisa test, and blood samples were tested with the Epi proColon® 2.0 test. Patients who were positive for either were advised to have a diagnostic colonoscopy. Results 63 of 172 subjects were compliant to screening colonoscopy (37%). 106 of the 109 subjects who refused colonoscopy accepted an alternative non-invasive method (97%). 90 selected the Septin9 blood test (83%), 16 selected a stool test (15%) and 3 refused any test (3%). Reasons for blood test preference included convenience of an office draw, overall convenience and less time consuming procedure. Conclusions 97% of subjects refusing colonoscopy accepted a non-invasive screening test of which 83% chose the Septin9 blood test. The observation that participation can be increased by offering non-invasive tests, and that a blood test is the preferred option should be validated in a prospective trial in the screening setting.
Poromechanical controls on spontaneous imbibition in earth materials
Over the last century, the state of stress in the earth’s upper crust has undergone rapid changes because of human activities associated with fluid withdrawal and injection in subsurface formations. The stress dependency of multiphase flow mechanisms in earth materials is a substantial challenge to understand, quantify, and model for many applications in groundwater hydrology, applied geophysics, CO 2 subsurface storage, and the wider geoenergy field (e.g., geothermal energy, hydrogen storage, hydrocarbon recovery). Here, we conduct core-scale experiments using N 2 /water phases to study primary drainage followed by spontaneous imbibition in a carbonate specimen under increasing isotropic effective stress and isothermal conditions. Using X-ray computed micro-tomography images of the unconfined specimen, we introduce a novel coupling approach to reconstruct pore-deformation and simulate multiphase flow inside the deformed pore-space followed by a semi-analytical calculation of spontaneous imbibition. We show that the irreducible water saturation increases while the normalized volume of spontaneously imbibed water into the specimen decreases (46–25%) in response to an increase in effective stress (0–30 MPa), leading to higher residual gas saturations. Furthermore, the imbibition rate decreases with effective stress, which is also predicted by a numerical model, due to a decrease in water relative permeability as the pore-space becomes more confined and tortuous. This fundamental study provides new insights into the physics of multiphase fluid transport, CO 2 storage capacity, and recovery of subsurface resources incorporating the impact of poromechanics.
The Novel Coupling of Operando Methods: Electrochemical Dilatometry with Mass Spectrometry Using the Example of a Li|Graphite Half Cell
The aging of lithium-ion cells critically affects their lifetime, safety, and performance, particularly due to electrode and electrolyte degradation. This study introduced a novel combined-measurement cell-integrating operando dilatometry and operando mass spectrometry to observe real-time physical and chemical changes during electrochemical cycling. Operando dilatometry measures thickness changes in the working electrode, while operando mass spectrometry analyzes gas emissions to provide insights into the underlying degradation processes. The results indicated significant correlations between electrochemical behavior, thickness changes, and gas evolution, revealing both the reversible and irreversible growth of constituents on particles and the electrode surface. The formation of the solid electrolyte interphase due to the degradation of electrolyte components, such as solvents or conductive salts, is identified as a key factor contributing to irreversible changes. The operando gas analysis highlighted the presence of decomposition intermediates and products, which are all linked to electrolyte degradation. Additionally, post-mortem gas chromatography coupled with mass spectrometry identified several compounds, confirming the presence of different decomposition pathways. This integrated and holistic approach deepened the understanding of the aging mechanisms at the electrode level.
Dietary supplementation of menthol-rich bioactive lipid compounds alters circadian eating behaviour of sheep
Background Plant bioactive lipid compounds (PBLC), commonly known as essential oils, are increasingly evaluated as feed additives in ruminants due to beneficial effects on animal performance and health; however, there is no study evaluating circadian eating behaviour in ruminants. Altered eating behaviour may be implicated in changes of feed intake in ruminants. Therefore, the present study investigated the influence of menthol-rich PBLC on circadian eating behaviour in 24 growing sheep that were equally divided into three treatments, control (without PBLC), a lower dose (80 mg/d) or a higher dose (160 mg/d) of PBLC. Daily doses of PBLC were supplied with 600 g/d of concentrates fed in three equal portions at 07:00, 11:00 and 15:00 h for 4 weeks, whereas, meadow hay was fed ad libitum. Results The eating behaviour recorded by an automatic transponder-operated feeding system revealed that daily eating time and feeder visits increased with increasing doses of PBLC. The circadian distribution of eating time and feeder visits (with 1-h resolution) was influenced by the treatment. Eating time during concentrate-offering hours and between concentrate-offering hours increased or tended to increase linearly with greater concentrations of PBLC. Feeder visits did not change significantly during concentrate-offering hours, but were greater in the PBLC groups compared with the control between concentrate-feeding hours. Average length of the longest meals (5th percentile) decreased due to PBLC feeding. Daily feed intake was greater in the PBLC groups than the control. Conclusions Menthol-rich PBLC in the applied dose range stimulate circadian eating behaviour, which cannot only be attributed to their presence during concentrate feeding hours, but persist during post-concentrate feeding hours.
Effects of dietary menthol-rich bioactive lipid compounds on zootechnical traits, blood variables and gastrointestinal function in growing sheep
Background The present study aimed at investigating the influence of 90% menthol-containing plant bioactive lipid compounds (PBLC, essential oils) on growth performance, blood haematological and biochemical profile, and nutrient absorption in sheep. Twenty-four growing Suffolk sheep were allotted into three dietary treatments: Control (without PBLC), lower dose of PBLC (PBLC-L; 80 mg/d) and higher dose of PBLC (PBLC-H; 160 mg/d). Sheep in all groups were fed meadow hay ad libitum plus 600 g/d of concentrate pellets for 28 d. Results Average daily gain was not affected by treatment. Feeding of PBLC increased hay and total feed intake per kg body weight ( P  < 0.05). Counts of total leucocytes, lymphocytes and monocytes were not different among treatments. However, neutrophil count decreased ( P  < 0.05) in PBLC-H with a similar trend in PBLC-L ( P  < 0.10). Concentrations of glucose, bilirubin, triglycerides, cholesterol, urea and magnesium in serum were not different among sheep fed different doses of PBLC. However, serum calcium concentration tended to increase in PBLC-H ( P  < 0.10) and serum concentrations of aspartate & asparagine ( P  < 0.01) and glutamate & glutamine ( P  < 0.05) increased linearly with increasing PBLC dose. In ruminal epithelia isolated from the rumen after killing, baseline conductance ( G t ; P  < 0.05) and short-circuit current ( I sc ; P  < 0.01) increased in both PBLC groups. Ruminal uptakes of glucose and methionine in the presence of Na + were not affected by the dietary PBLC supplementation. In the absence of Na + , however, glucose and methionine uptakes increased ( P  < 0.05) in PBLC-H. In the jejunum, I sc tended to increase in PBLC-H ( P  < 0.10), but baseline G t was not affected. Intestinal uptakes of glucose and methionine were not influenced by PBLC in the presence or absence of Na + . Conclusion The results suggest that menthol-rich PBLC increase feed intake, and passive ion and nutrient transport, the latter specifically in the rumen. They also increased serum concentrations of urea precursor amino acids and tended to increase serum calcium concentrations. Future studies will have to show whether some of these findings might be commonly linked to a stimulation of transient receptor potential (TRP) channels in the gastrointestinal tract.
Exponential time integrators for stochastic partial differential equations in 3D reservoir simulation
The transport of chemically reactive solutes (e.g. surfactants, CO 2 or dissolved minerals) is of fundamental importance to a wide range of applications in oil and gas reservoirs such as enhanced oil recovery and mineral scale formation. In this work, we investigate exponential time integrators, in conjunction with an upwind weighted finite volume discretisation in space, for the efficient and accurate simulation of advection–dispersion processes including non-linear chemical reactions in highly heterogeneous 3D oil reservoirs. We model sub-grid fluctuations in transport velocities and uncertainty in the reaction term by writing the advection–dispersion–reaction equation as a stochastic partial differential equation with multiplicative noise. The exponential integrators are based on the variation of constants solution and solve the linear system exactly. While this is at the expense of computing the exponential of the stiff matrix representing the finite volume discretisation, the use of real Léja point or the Krylov subspace technique to approximate the exponential makes these methods competitive compared to standard finite difference-based time integrators. For the deterministic system, we investigate two exponential time integrators, the second-order accurate exponential Euler midpoint (EEM) scheme and exponential time differencing of order one (ETD1). All our numerical examples demonstrate that our methods can compete in terms of efficiency and accuracy compared with standard first-order semi-implicit time integrators when solving (stochastic) partial differential equations that model mixing and chemical reactions in 3D heterogeneous porous media. Our results suggest that exponential time integrators such as the ETD1 and EEM schemes could be applied to typical 3D reservoir models comprising tens to hundreds of thousands unknowns.