Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
90 result(s) for "Geiser, David M"
Sort by:
Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex
The Fusarium sambucinum species complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades: Brachygibbosum , Graminearum , Longipes , Novel , Sambucinum , and Sporotrichioides . Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within the Sambucinum Clade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of the Graminearum Clade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee. In planta , the Graminearum Clade strains produced nivalenol or deoxynivalenol and the aggressive Sambucinum Clade strains synthesized NX-3 and 15-keto NX-3. Other strains within the Brachygibbosum , Longipes , Novel , Sambucinum , and Sporotrichioides Clades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of the Graminearum Clade.
Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding?
ABSTRACT True fungi ( Fungi ) and fungus-like organisms (e.g. Mycetozoa , Oomycota ) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
DNA sequence-based identification of Fusarium: Current status and future directions
Fusarium ranks as one of the worlds most economically destructive and species-rich groups of mycotoxigenic plant pathogens. These ubiquitous molds produce a plethora of toxic secondary metabolites, such as trichothecenes, zearalenone, fumonisins, and enniatins, which pose a significant threat to agricultural biosecurity, food safety, and plant, human and animal health. Fusarial-induced diseases of virtually every economically important plant cost the global agricultural economy multi-billion euro losses annually. Moreover, phylogenetically diverse fusaria, including plant pathogens, cause infections in humans, with those involving the cornea and nails being the most common.
Comparative analysis uncovers the limitations of current molecular detection methods for Fusarium oxysporum f. sp. cubense race 4 strains
Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4) is threatening banana production worldwide. Despite quarantine efforts, the pathogen continues to spread; thus, early diagnosis plays an essential role for the proper execution of contingency plans. Here, we assess the accuracy of four PCR-based molecular methods described in the literature for the identification and detection of race 4 strains, including Subtropical (Foc STR4) and Tropical Race 4 causing Fusarium wilt of banana. We screened a total of 302 isolates using these four markers, and performed phylogenetic analyses, Vegetative Compatibility Group (VCG) testing, sequence comparison, and pathogenicity tests for selected isolates. Our results show that three out of the four markers tested are not reliable for identification of Foc STR4 and TR4, as DNA from isolates from Ecuador, pathogenic and nonpathogenic to banana, obtained from different banana cultivars, displayed cross-reaction with these methods; that is, false positives can occur during the diagnostic process for race 4. Phylogenetic analyses, VCG testing, sequence comparison, and pathogenicity tests suggest the presence of non-target F. oxysporum isolates that share genomic regions with pathogenic strains but lack true pathogenicity to banana. The findings of this work are of foremost importance for international regulatory agencies performing surveillance tests in pathogen-free areas using the current diagnostic methods. We suggest the use of a genetic locus possibly related to virulence, previously identified by T-DNA, and amplified with primers W2987F/ W2987R, for diagnosis of Foc TR4 as the most reliable alternative. We urge the adoption of a more holistic view in the study of F. oxysporum as a plant pathogen that considers the biology and diversity of the species for the development of better diagnostic tools.
Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex
Fusisporium solani was described as the causal agent of a dry rot of potato in Germany in the mid 19th century. As Fusarium solani, the species became known as a plurivorous plant pathogen, endophyte, decomposer, and opportunistic pathogen of humans and nutritional symbiont of insects. In parallel, it became evident that the morphologically defined species F. solani represents a phylogenetically and biologically complex group of often morphologically cryptic species that has come to be known in part as the F. solani species complex (FSSC), accommodating several formae speciales and mating populations/biological species. The FSSC currently includes more than 60 phylogenetic species. Several of these have been named, but the majority remains unnamed and the identity of F. solani sensu stricto is unclear. To promote further taxonomic developments in the FSSC, lectoand epitypification is proposed for Fusisporium solani. Although no type material for F. solani is known to exist, the species was abundantly illustrated in the protologue. Thus, a relevant illustration provided by von Martius is selected as the lectotype. The epitype selected here originates from a rotting potato collected in a field in Slovenia. This strain causes a dry rot of artificially inoculated potatoes. It groups in the heretofore unnamed phylogenetic species 5, which is nested within clade 3 of the FSSC (FSSC 5). Members of this phylogenetic species have a wide geographic distribution and include soil saprotrophs and plant and opportunistic human pathogens. This typification is consistent with the original description of Fusisporium solani and the concept of F. solani as a widely distributed soil inhabitant and pathogen.
Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF)
About the Authors: Christopher W. Smyth * E-mail: chris.smyth.psu@gmail.com Affiliation: Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America ORCID logo http://orcid.org/0000-0001-9180-8264 Jullie M. Sarmiento-Ramírez Affiliation: Departamento de Micología, Real Jardín Botánico-CSIC, Madrid, Spain Dylan P. G. Short Affiliation: Department of Plant Pathology, University of California-Davis, Salinas, California, United States of America Javier Diéguez-Uribeondo Affiliation: Departamento de Micología, Real Jardín Botánico-CSIC, Madrid, Spain ORCID logo http://orcid.org/0000-0002-4488-0658 Kerry O’Donnell Affiliation: Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, Illinois, United States of America David M. Geiser Affiliation: Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America Introduction Emerging fungal diseases of wildlife are increasingly common, with far-reaching consequences for biodiversity and ecosystem health [1]. A novel pathogen gains access to and infects naïve hosts as a result of migration of the pathogen or the development of novel pathogenic genotypes. [...]effective management strategies must aim primarily at preventing pathogen introduction and expansion, often with a focus on potential disease vectors or other means of pathogen transmission. [...]management of disease caused by endemic pathogens relies on an understanding of environmental and host factors that influence disease emergence and severity. Because of these fundamental differences in management strategies, defining a pathogen as novel or endemic is a key first step toward mitigating disease impact on host populations [6]. The answers to these questions should provide a framework for designing management strategies. Because of bottlenecks and clonal selection, novel pathogens of sea turtle eggs are expected to exhibit reduced allelic variation and increased association among loci when compared with non-STEF-associated populations (i.e., from sink drains, human infections, hatched turtle eggshells, beach sand).
Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder
In colony collapse disorder (CCD), honey bee colonies inexplicably lose their workers. CCD has resulted in a loss of 50 to 90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naive bees suggests that infection may contribute to CCD. We used an unbiased metagenomic approach to survey microflora in CCD hives, normal hives, and imported royal jelly. Candidate pathogens were screened for significance of association with CCD by the examination of samples collected from several sites over a period of 3 years. One organism, Israeli acute paralysis virus of bees, was strongly correlated with CCD.
New species from the Fusarium solani species complex derived from perithecia and soil in the Old World tropics
A large collection of strains belonging to the Fusarium solani species complex (FSSC) was isolated from soil and perithecia in primary forests in Sri Lanka (from fallen tree bark) and tropical Australia (Queensland, from fallen tree fruits and nuts). Portions of the translation elongation factor 1-alpha (tef1) gene, the nuclear large subunit (NLSU) and internal transcribed spacer regions (ITS) of the nuclear ribosomal RNA genes were sequenced in 52 isolates from soil and perithecia. The FSSC was divided previously into three clades with some biogeographic structure, termed Clades 1, 2 and 3. All Sri Lankan and Australian soil isolates were found to be members of Clade 3, most grouping with the cosmopolitan soil-associated species F. falciforme. All but two Sri Lankan perithecial isolates were associated with a set of five divergent phylogenetic lineages that were associated with Clade 2. Australian perithecial isolates resided in a subclade of Clade 3 where most of the previously defined mating populations of the FSSC reside. Isolates from perithecia and those cultured from soil were always members of different species lineages, even when derived from proximal locations. The previous biogeographic assignment of Clade 2 to South America is now expanded to the worldwide tropics. Sri Lanka appears to be an important center of diversity for the FSSC. Nectria haematococca is epitypified with a collection from the type locality in Sri Lanka; its anamorph is described as a new species, Fusarium haematococcum. Neocosmospora E.F. Smith is adopted as the correct genus for Nectria haematococca. These new species are described: F. kurunegalense/Neo. kurunegalensis, F. rectiphorus/Neo. rectiphora/, F. mahasenii/Neo. mahasenii/, F. kelerajum/Neo. keleraja.
Molecular Evidence for the Early Colonization of Land by Fungi and Plants
The colonization of land by eukaryotes probably was facilitated by a partnership (symbiosis) between a photosynthesizing organism (phototroph) and a fungus. However, the time when colonization occurred remains speculative. The first fossil land plants and fungi appeared 480 to 460 million years ago (Ma), whereas molecular clock estimates suggest an earlier colonization of land, about 600 Ma. Our protein sequence analyses indicate that green algae and major lineages of fungi were present 1000 Ma and that land plants appeared by 700 Ma, possibly affecting Earth's atmosphere, climate, and evolution of animals in the Precambrian.