Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Geng, Bingxu"
Sort by:
A revisit of the interannual variation of the South China Sea upper layer circulation in summer: correlation between the eastward jet and northward branch
2020
The interannual variation of the South China Sea upper layer circulation in summer is revisited based on analysis of current derived from altimetry data, Acoustic Doppler Current Profilers moorings, and numerical simulations. Results show not only the interannual variation of the eastward jet (eastward branch), but also its anti-correlation with the northward branch. On interannual time scale, when the eastward branch is enhanced, the northward branch is weakened, and vice versa. Their variations are largely related to the change of the South China Sea summer monsoon (SCSSM), and are strongly influenced by the Luzon strait Transport (LST). Composite analysis reveals a stronger SCSSM and LST into the SCS in the developing phase of El Niño would lead to an eastward branch dominant circulation pattern, whereas a weaker SCSSM and reduced LST into the SCS in the decaying phase of El Niño favors a northward branch dominant circulation pattern. The distinct composite patterns appear in El Niño and Southern Oscillation cycles, rather than episodic event or multiyear El Niño or La Niña. Contribution of the transport of major straits in the SCS to the interannual variation of the SCS summer circulation is quantitatively evaluated for the first time, and the results show that the change of the planetary vorticity flux through three major straits (Luzon strait contributes most) is as equally important as the vorticity input change from local wind stress curl.
Journal Article
Seasonal variation in the three-dimensional structures of coastal thermal front off western Guangdong
2021
The seasonal structure and dynamic mechanism of oceanic surface thermal fronts (STFs) along the western Guangdong coast over the northern South China Sea shelf were analyzed using
in situ
observational data, remote sensing data, and numerical simulations. Both
in situ
and satellite observations show that the coastal thermal front exhibits substantial seasonal variability, being strongest in winter when it has the greatest extent and strongest sea surface temperature gradient. The winter coastal thermal front begins to appear in November and disappears after the following April. Although runoff water is more plentiful in summer, the front is weak in the western part of Guangdong. The frontal intensity has a significant positive correlation with the coastal wind speed, while the change of temperature gradient after September lags somewhat relative to the alongshore wind. The numerical simulation results accurately reflect the seasonal variation and annual cycle characteristics of the frontal structure in the simulated area. Based on vertical cross-section data, the different frontal lifecycles of the two sides of the Zhujiang (Pearl) River Estuary are analyzed.
Journal Article
Three-dimensional numerical study of cooling water discharge of Daya Bay Nuclear Power Plant in southern coast of China during summer
2023
The impact of thermal pollution caused by cooling water discharge of power plant on the surrounding marine ecology has been a hot issue in oceanographic research. To reveal the distribution pattern of cooling water discharge of Daya Bay Nuclear Power Plant in summer and the impact on the surrounding marine environment, this research established a high-resolution three-dimensional (3D) numerical model based on ECOMSED in the Daya Bay. The model results are consistent with the observations on the distribution of tide level and temperature. The simulated horizontal distribution of temperature rise is consistent with the distribution trend of remote sensing images. The study showed that the stratification of the Daya Bay water is stronger in summer. The cooling water mainly spreads in the surface layer, and the temperature rise in the bottom layer is not apparent. Quantitative analysis showed that around 18.8-21.6 km 2 of the area has 1°C surface temperature rises. The area of temperature rises that exceeds 2 °C is between 6.2 and 8.1 km 2 . The area of temperature rises that exceeds 4 °C is between no more than 1.2 km 2 . The area with a bottom temperature rises of 1 °C does not exceed 2.2 km 2 , and there is no area that has a bottom temperature rise over 1 °C. The tidal dynamics process influences on the dispersion of cooling water discharge from Daya Bay Nuclear Power Plant, where the influence is more significant in the spring tide period than in the neap tide period. Our findings are consistent with previous researches.
Journal Article
Risk assessment of offshore oil spill in the northern South China Sea: A stochastic scenario modeling approach
by
Lu, Lingyan
,
Hong, Man
,
Geng, Bingxu
in
Numerical modeling
,
oil spill accident
,
risk assessment
2022
The coastal area in the northern South China Sea (nSCS) is one of China’s most economically active regions. The fast-growing industry of marine sector and the shipping has increased the probability of oil spill accidents. An oil spill is a usually unexpected incident that is harmful to the ecological environment and marine organisms of the coastal area. As a result, utilizing a numerical model to simulate the fate and transport trajectory of spilled oil and to assess the potential risk of an oil spill accident to the coastal marine environment is of great necessity. The present study aimed to examine the impact of the risk of oil spills on the coastal environment in the nSCS. We built a hydrodynamic model and an oil spill dispersion model based on MIKE21 FM to study the tidal dynamics and oil spill dispersion in the coastal area in the nSCS. Moreover, the stochastic approach was used to simulate and predict the fastest arrival time and the probability distribution of the pollution of the oil film to the surrounding environment in the coastal regions of the nSCS. We examined the mechanisms for the influences of tides and wind on the fastest arrival time of oil film and the spatial distribution of the pollution probability of oil spill incidents at different locations in the nSCS based on the model. The results showed that the wind direction has a dominating effect on the direction of the oil dispersion. Due to the differences in the tidal dynamics in different regions, the migration and dispersion of the oil are also affected by the tidal current. This research provides guidance on the risk assessment of oil spill accidents for marine environmental management.
Journal Article
Interannual variation of the South China Sea circulation during winter: intensified in the southern basin
2019
Surface geostrophic current derived from altimetry remote sensing data, and current profiles observed from in-situ Acoustic Doppler Current Profilers (ADCP) mooring in the northern South China Sea (NSCS) and southern South China Sea (SSCS) are utilized to study the kinetic and energetic interannual variability of the circulation in the South China Sea (SCS) during winter. Results reveal a more significant interannual variation of the circulation and water mass properties in the SSCS than that in the NSCS. Composite ananlysis shows a significantly reduced western boundary current (WBC) and a closed cyclonic eddy in the SSCS at the mature phase of El Niño event, but a strong WBC and an unclosed cyclonic circulation in winter at normal or La Niña years. The SST is warmer while the subsurface water is colder and fresher in the mature phase of El Niño event than that in the normal or La Niña years in the SSCS. Numerical experiments and energy analysis suggest that both local and remote wind stress change are important for the interannual variation in the SSCS, remote wind forcing and Kuroshio intrusion affect the circulation and water mass properties in the SSCS through WBC advection.
Journal Article
Organ-specific delivery of an mRNA-encoded bispecific T cell engager targeting glypican-3 in hepatocellular carcinoma
2025
T-cell engager (TCE)-based immunotherapy is clinically validated in hematological cancers. However, application in solid tumors faces hurdles including T cell penetration, the immunosuppressive tumor microenvironment, and toxicity. We develop an mRNA-encoded TCE (MTS105) targeting Glypican-3, the hepatocellular carcinoma antigen, delivered via lipid nanoparticles directly to liver tissue. In mice, rats, and cynomolgus monkeys, MTS105 exhibits higher liver exposure versus plasma. Liver-orthotopic tumor-bearing mice achieve complete, dose-dependent regression, with fast intratumoral T cell activation owing to sustained higher liver and tumor functional TCE exposure versus conventional antibody-based TCE. In vivo, MTS105 induces intratumoral CD8 cell precursor and terminally differentiated memory subsets with high activation scores. In cynomolgus monkeys, MTS105 displays favorable, linear plasma pharmacokinetics including mRNA, ionizable lipid, and translated TCE following single and repeated-four-weekly dosing (up to 45 μg/kg). No severe adverse effects or gross pathology were observed. Our results thus support the advancement of MTS105 into clinical trials, with a first-in-human study currently underway.
T-cell engager (TCE)-based immunotherapy requires further development in solid tumors due to limited T cell penetration, immunosuppressive tumor microenvironment and toxicity. The authors here develop a glypican-3 targeting mRNA TCE (MTS105) which manifests superior T cell activation and tumor regression hepatocellular carcinoma mice model comparing to conventional TCE, and safety with cynomolgus monkey studies.
Journal Article
Value of anal swabs for SARS-COV-2 detection: a literature review
2021
Facing the unprecedented global public health crisis caused by coronavirus disease 2019 (COVID-19), nucleic acid tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the gold standard for diagnosing COVID-19. The asymptomatic carriers were not suspected of playing a significant role in the ongoing pandemic, and universal nucleic acid screening in close contacts of confirmed cases and asymptomatic carriers has been carried out in many medium- and high-risk areas for the spread of the virus. Recently, anal swabs for key population screening have been shown to not only reduce missed diagnoses but also facilitate the traceability of infectious sources. As a specimen for the detection of viruses, the goal of this paper is to briefly review the transmission route of SARS-CoV-2 and the necessity of using anal swabs for SARS-CoV-2 screening to minimize transmission and a threat to other people with COVID-19.
Journal Article