Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,684 result(s) for "George, Doug"
Sort by:
Fire & blood
This is the first volume of the definitive two-part history of the Targaryens in Westeros and covers Aegon I (the Conqueror) to the regency of Aegon III (the Dragonslayer). House Targaryen was the only family of dragonlords to survive the Doom of Valyria, and took up residence on Dragonstone. Re-hear tales of the legendary Aegon the Conqueror, creator of the Iron Throne. Meet the generations of Targaryens who fought to hold that iconic seat, from Aegon the Conqueror all the way up to the civil war that nearly tore their dynasty apart. What really happened during the Dance of the Dragons? Why was it so deadly to visit Valyria after the Doom? What were Maegor the Cruel's worst crimes? What was it like in Westeros when dragons ruled the skies? These are but a few of the questions answered by a learned maester of the Citadel. Discover the often bloody history of Westeros when dragons ruled the skies.
The Global High Frequency Radar Network
Academic, government, and private organizations from around the globe have established High Frequency radar (hereinafter, HFR) networks at regional or national levels. Partnerships have been established to coordinate and collaborate on a single global HFR network (http://global-hfradar.org/ ). These partnerships were established in 2012 as part of the Group on Earth Observations (GEO) to promote HFR technology and increase data sharing among operators and users. The main product of HFR networks are continuous maps of ocean surface currents within 200 km of the coast at high spatial (1-6 km) and temporal resolution (hourly or higher). Cutting-edge remote sensing technologies are becoming a standard component for ocean observing systems, contributing to the paradigm shift towards ocean monitoring. In 2017 the Global HFR Network was recognized by the Joint Technical WMO-IOC Commission for Oceanography and Marine Meteorology (JCOMM) as an observing network of the Global Ocean Observing System (GOOS). In this paper we will discuss the development of the network as well as establishing goals for the future. The U.S. High Frequency Radar Network (HFRNet) has been in operation for over thirteen years, with radar data being ingested from 31 organizations including measurements from Canada and Mexico. HFRNet currently holds a collection from over 150 radar installations totaling millions of records of surface ocean velocity measurements. During the past 10 years in Europe, HFR networks have been showing steady growth with over 60 stations currently deployed and many in the planning stage. In Asia and Oceania countries, more than 110 radar stations are in operation. HFR technology can be found in a wide range of applications: for marine safety, oil spill response, tsunami warning, pollution assessment, coastal zone management, tracking environmental change, numerical model simulation of 3-dimensional circulation, and research to generate new understanding of coastal ocean dynamics, depending mainly on each country’s coastal sea characteristics. These radar networks are examples of national inter-agency and inter-institutional partnerships for improving oceanographic research and operations. As global partnerships grow, these collaborations and improved data sharing enhances our ability to respond to regional, national, and global environmental and management issues.
Leading and managing in the social sector : strategies for advancing human dignity and social justice
\"This book explores leadership and management in social sector organizations, which include, NGOs, non-profits, social enterprises, social businesses, and cross-sector collaborations focusing on advancing human dignity and social justice. It provides social sector leaders with an overview of current trends, issues, and challenges in the field as well as best practices to foster effective programs, sustain organizations and meet the growing demands of the sector. The enclosed chapters cover topics such as cross-sector organizational design, innovation for client services, gender management dynamics, policy advocacy, and the growing social entrepreneurship movement.\"--Publisher's website.
Evaluation of the Effect of Fungatol and Gamma-T-ol on the Emergence and Adult Parasitoid Survival of Mummies of Cotton Aphids Parasitized by Aphidius colemani
Beneficial insects play a major role in controlling pest populations. In sustainable agricultural production systems, control methods compatible with integrated pest management (IPM) are preferred over broad-spectrum pesticides. EOs from aromatic plants may provide a new and safe alternative to synthetic chemicals. In this research, the efficacy of Fungatol, Gamma-T-ol, Fungatol plus neem, and Gamma-T-ol plus neem was evaluated against Aphidius colemani Viereck (Hymenoptera: Braconidae; Aphidiidae), the parasitoid of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Under laboratory and greenhouse conditions, five different concentrations of each formulation were applied to parasitized mummies and adult parasitoids. Results for parasitoid emergence from aphid mummies sprayed with different concentrations of Fungatol, Gamma-T-ol, Fungatol plus neem, and Gamma-T-ol plus neem in the laboratory and glasshouse showed that the formulations did not adversely affect adult emergence as rates above 60% were observed. For residual toxicity tests done by exposing adult parasitoids to a fresh, dry biopesticide film sprayed on glass plates, less than 20% mortality was observed after 48 h of exposure. Adult longevity tests revealed that the highest concentrations of some of the formulations evaluated were slightly toxic to A. colemani. According to the IOBC rating, our results indicated that most of the tested concentrations for each formulation were harmless to A. colemani. Based on the above results, it may be proposed that the formulations evaluated in this study are potential botanical pesticide candidates for incorporation into an IPM program.
Yield losses in grain sorghum due to rust infection
Although rust (caused by Puccinia purpurea) is a common disease in Australian grain sorghum crops, particularly late in the growing season (April onwards), its potential to reduce yield has not been quantified. Field trials were conducted in Queensland between 2003 and 2005 to evaluate the effect of sorghum rust on grain yield of two susceptible sorghum hybrids (Tx610 and Pride). Rust was managed from 28-35 days after sowing until physiological maturity by applying oxycarboxin (1 kg active ingredient/100 L of water/ha) every 10 days. When data were combined for the hybrids, yield losses ranged from 13.1% in 2005 to 3.2% in 2003 but differences in yield the between sprayed and unsprayed treatments were statistically significant (P a parts per thousand currency signaEuro parts per thousand 0.05) only in 2005. Final area under the disease progress curve (AUDPC) values reflected the yield losses in each year. The higher yield loss in 2005 can be attributed primarily to the early development of the rust epidemic and the higher inoculum levels in spreader plots at the time of planting of the trials.