Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Gerber, Anthony N"
Sort by:
A machine learning approach to triaging patients with chronic obstructive pulmonary disease
by
Wysham, Nicholas G.
,
Bazaz, Gaurav
,
Swaminathan, Sumanth
in
Algorithms
,
Care and treatment
,
Chronic illnesses
2017
COPD patients are burdened with a daily risk of acute exacerbation and loss of control, which could be mitigated by effective, on-demand decision support tools. In this study, we present a machine learning-based strategy for early detection of exacerbations and subsequent triage. Our application uses physician opinion in a statistically and clinically comprehensive set of patient cases to train a supervised prediction algorithm. The accuracy of the model is assessed against a panel of physicians each triaging identical cases in a representative patient validation set. Our results show that algorithm accuracy and safety indicators surpass all individual pulmonologists in both identifying exacerbations and predicting the consensus triage in a 101 case validation set. The algorithm is also the top performer in sensitivity, specificity, and ppv when predicting a patient's need for emergency care.
Journal Article
Enhancer RNA transcription pinpoints functional genetic variants linked to asthma
2025
Bidirectional enhancer RNA (eRNA) transcription is a widespread response to environmental signals and glucocorticoids. We investigated whether single nucleotide polymorphisms (SNPs) within dynamically regulated eRNA-transcribing regions contribute to genetic variation in asthma. Through applying multivariate regression modeling with permutation-based significance thresholding to a large clinical cohort, we identified novel associations between asthma and 35 SNPs located in eRNA-transcribing regions implicated in regulating cellular processes relevant to asthma, including
rs258760
(mean allele frequency = 0.34, asthma odds ratio = 0.95; P = 5.04E-03). We show that
rs258760
disrupts an active aryl hydrocarbon receptor (AHR) response element linked to transcriptional regulation of the glucocorticoid receptor gene by AHR ligands, which are commonly found in combusted air pollution. The role of
rs258760
as a protective variant for asthma was independently validated using UK Biobank data. Our findings establish eRNA signatures as a tool for discovery of functional genetic variants and define a novel association between air pollution, glucocorticoid signaling and asthma.
In this study, enhancer RNA transcription is used as a filter for discovery of SNPs associated with asthma risk that reside within genomic enhancers. A genetic link between asthma and regulation of glucocorticoid receptor expression by combusted air pollutants was characterized.
Journal Article
Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium
2025
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Journal Article
Airway Smooth Muscle Dysfunction in Asthma: Releasing the Anchor
2025
Airway smooth muscle (ASM) dysfunction is a key factor in asthma, contributing to hypercontractility, hypertrophy, migration, and cytokine secretion. While bronchodilators and corticosteroids are commonly used to treat asthma, their effects on ASM function are not fully understood. Biologic therapies targeting type II inflammation have shown promise in severe asthma, but their impact on ASM function is unclear. G protein-coupled receptors (GPCRs) and protein kinase A (PKA) play important roles in ASM signaling and contraction. Understanding the pathways involved in GPCR-mediated PKA activity could lead to new therapies for ASM dysfunction. Recent research has focused on A-kinase anchoring proteins (AKAPs), which regulate PKA activity and compartmentalization. Knockdown of specific AKAPs, such as Ezrin and Gravin, has been shown to affect PKA signaling and ASM contractility. However, further research is needed to fully understand the role of AKAPs in ASM function and their potential as therapeutic targets for asthma.
Journal Article
Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program
by
Duan, Qiming
,
Morrison-Nozik, Alexander
,
Jain, Mukesh K.
in
Animals
,
Athletes
,
Biological Sciences
2015
Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC–KLF15 signaling mediates salutary therapeutic effects in themdxmouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.
Journal Article
Determination of steady-state transcriptome modifications associated with repeated homotypic stress in the rat rostral posterior hypothalamic region
by
Campeau, Serge
,
Sasse, Sarah K.
,
Dowell, Robin D.
in
chronic stress
,
glucocorticoids
,
habituation
2023
Chronic stress is epidemiologically correlated with physical and psychiatric disorders. Whereas many animal models of chronic stress induce symptoms of psychopathology, repeated homotypic stressors to moderate intensity stimuli typically reduce stress-related responses with fewer, if any, pathological symptoms. Recent results indicate that the rostral posterior hypothalamic (rPH) region is a significant component of the brain circuitry underlying response reductions (habituation) associated with repeated homotypic stress. To test whether posterior hypothalamic transcriptional regulation associates with the neuroendocrine modifications induced by repeated homotypic stress, RNA-seq was performed in the rPH dissected from adult male rats that experienced either no stress, 1, 3, or 7 stressful loud noise exposures. Plasma samples displayed reliable increases of corticosterone in all stressed groups, with the smallest increase in the group exposed to 7 loud noises, indicating significant habituation compared to the other stressed groups. While few or no differentially expressed genes were detected 24-h after one or three loud noise exposures, relatively large numbers of transcripts were differentially expressed between the group exposed to 7 loud noises when compared to the control or 3-stress groups, respectively, which correlated with the corticosterone response habituation observed. Gene ontology analyses indicated multiple significant functional terms related to neuron differentiation, neural membrane potential, pre- and post-synaptic elements, chemical synaptic transmission, vesicles, axon guidance and projection, glutamatergic and GABAergic neurotransmission. Some of the differentially expressed genes (Myt1l, Zmat4, Dlx6, Csrnp3) encode transcription factors that were independently predicted by transcription factor enrichment analysis to target other differentially regulated genes in this study. A similar experiment employing
in situ
hybridization histochemical analysis in additional animals validated the direction of change of the 5 transcripts investigated (Camk4, Gabrb2, Gad1, Grin2a and Slc32a) with a high level of temporal and regional specificity for the rPH. In aggregate, the results suggest that distinct patterns of gene regulation are obtained in response to a repeated homotypic stress regimen; they also point to a significant reorganization of the rPH region that may critically contribute to the phenotypic modifications associated with repeated homotypic stress habituation.
Journal Article
Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation
by
Haldar, Saptarsi M.
,
Jain, Mukesh K.
,
Nosek, Thomas M.
in
amino acid metabolism
,
Amino acids
,
Amino Acids - metabolism
2012
The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown. Here we demonstrate that KLF15 is essential for skeletal muscle lipid utilization and physiologic performance. KLF15 directly regulates a broad transcriptional program spanning all major segments of the lipid-flux pathway in muscle. Consequently, Klf15-deficient mice have abnormal lipid and energy flux, excessive reliance on carbohydrate fuels, exaggerated muscle fatigue, and impaired endurance exercise capacity. Elucidation of this heretofore unrecognized role for KLF15 now implicates this factor as a central component of the transcriptional circuitry that coordinates physiologic flux of all three basic cellular nutrients: glucose, amino acids, and lipids.
Journal Article
Asthma Pathogenesis: Phenotypes, Therapies, and Gaps: Summary of the Aspen Lung Conference 2023
by
Wenzel, Sally E.
,
Kraft, Monica
,
Gerber, Anthony N.
in
Asthma
,
Asthma - genetics
,
Asthma - therapy
2024
Although substantial progress has been made in our understanding of asthma pathogenesis and phenotypes over the nearly 60-year history of the Aspen Lung Conferences on asthma, many ongoing challenges exist in our understanding of the clinical and molecular heterogeneity of the disease and an individual patient's response to therapy. This report summarizes the proceedings of the 2023 Aspen Lung Conference, which was organized to review the clinical and molecular heterogeneity of asthma and to better understand the impact of genetic, environmental, cellular, and molecular influences on disease susceptibility, heterogeneity, and severity. The goals of the conference were to review new information about asthma phenotypes, cellular processes, and cellular signatures underlying disease heterogeneity and treatment response. The report concludes with ongoing gaps in our understanding of asthma pathobiology and provides some recommendations for future research to better understand the clinical and basic mechanisms underlying disease heterogeneity in asthma and to advance the development of new treatments for this growing public health problem.
Journal Article
Corynebacterium tuberculostearicum, a human skin colonizer, induces the canonical nuclear factor‐κB inflammatory signaling pathway in human skin cells
by
Almishri, Wagdi
,
Lauzon, Gilles J.
,
Gerber, Anthony N.
in
Antibodies
,
Bacteria
,
Carcinoma, Squamous Cell - microbiology
2020
Introduction
Corynebacterium tuberculostearicum (C. t.) is a ubiquitous bacterium that colonizes human skin. In contrast to other members of the genus Corynebacterium, such as toxigenic Corynebacterium diphtheriae or the opportunistic pathogen Corynebacterium jeikeium, several studies suggest that C. t. may play a role in skin health and disease. However, the mechanisms underlying these effects remain poorly understood.
Methods
To investigate whether C. t. induces inflammatory pathways in primary human epidermal keratinocytes (HEKs) and human cutaneous squamous carcinoma cells (SCCs), cell culture, reverse transcription‐polymerase chain reaction (PCR), enzyme‐linked immunosorbent assay, immunofluorescence microscopy, Western blot, chromatin immunoprecipitation‐PCR, small interfering RNA knockdown and luciferase reporter expression system were used.
Results
Herein, we demonstrate that C. t. upregulates the messenger RNA (mRNA) and protein levels of inflammatory mediators in two human skin cell lines, HEKs and SCCs. We further show activation of the canonical nuclear factor‐κB (NF‐κB) pathway in response to C. t. infection, including phosphorylation of the inhibitor of κB (IκB), the nuclear translocation of NF‐κB subunit (NF‐κB‐P65) and the recruitment of NF‐κB‐P65 and RNA polymerase to the NF‐κB response elements at the promoter region of the inflammatory genes. Lastly, the data confirm that C. t.‐induced tumor necrosis factor mRNA expression in HEKs is toll‐like receptor 2 (TLR2) dependent.
Conclusion
Our results offer a mechanistic model for C. t.‐induced inflammation in human keratinocytes via TLR2 and activation of IκB kinase and downstream signaling through the canonical NF‐κB pathway. Relevance to chronic inflammatory diseases of the skin and cutaneous oncology is discussed.
Corynebacterium tuberculostearicum (C. t.) may play a role in skin health and disease. C. t. upregulates the messenger RNA (mRNA) and protein levels of inflammatory mediators in the human skin cell via the activation of the canonical nuclear factor‐κB pathway.
Journal Article