Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Gernert, Kim M"
Sort by:
xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data
Background Detection of low abundance metabolites is important for de novo mapping of metabolic pathways related to diet, microbiome or environmental exposures. Multiple algorithms are available to extract m/z features from liquid chromatography-mass spectral data in a conservative manner, which tends to preclude detection of low abundance chemicals and chemicals found in small subsets of samples. The present study provides software to enhance such algorithms for feature detection, quality assessment, and annotation. Results xMSanalyzer is a set of utilities for automated processing of metabolomics data. The utilites can be classified into four main modules to: 1) improve feature detection for replicate analyses by systematic re-extraction with multiple parameter settings and data merger to optimize the balance between sensitivity and reliability, 2) evaluate sample quality and feature consistency, 3) detect feature overlap between datasets, and 4) characterize high-resolution m/z matches to small molecule metabolites and biological pathways using multiple chemical databases. The package was tested with plasma samples and shown to more than double the number of features extracted while improving quantitative reliability of detection. MS/MS analysis of a random subset of peaks that were exclusively detected using xMSanalyzer confirmed that the optimization scheme improves detection of real metabolites. Conclusions xMSanalyzer is a package of utilities for data extraction, quality control assessment, detection of overlapping and unique metabolites in multiple datasets, and batch annotation of metabolites. The program was designed to integrate with existing packages such as apLCMS and XCMS, but the framework can also be used to enhance data extraction for other LC/MS data software.
Genetic Similarity of Gonococcal Homologs to Meningococcal Outer Membrane Proteins of Serogroup B Vaccine
Gonorrhea, a sexually transmitted disease, causes substantial global morbidity and economic burden. New prevention and control measures for this disease are urgently needed, as strains resistant to almost all classes of antibiotics available for treatment have emerged. Previous reports demonstrate that cross-protection from gonococcal infections may be conferred by meningococcal serogroup B (MenB) outer membrane vesicle (OMV)-based vaccines. Among 1,525 common proteins shared across the genomes of both N. gonorrhoeae and N. meningitidis , 57 proteins were predicted to be surface expressed (outer membrane proteins [OMPs]) and thus preferred targets for vaccine development. The majority of these OMPs showed high sequence identity between the 2 bacterial species. Our results provide valuable insight into the meningococcal antigens present in the current OMV-containing MenB-4C vaccine that may contribute to cross-protection against gonorrhea and may inform next steps in gonorrhea vaccine development. The human pathogens Neisseria gonorrhoeae and Neisseria meningitidis share high genome identity. Retrospective analysis of surveillance data from New Zealand indicates the potential cross-protective effect of outer membrane vesicle (OMV) meningococcal serogroup B vaccine (MeNZB) against N. gonorrhoeae . A licensed OMV-based MenB vaccine, MenB-4C, consists of a recombinant FHbp, NhbA, NadA, and the MeNZB OMV. Previous work has identified several abundantly expressed outer membrane proteins (OMPs) as major components of the MenB-4C OMV with high sequence similarity between N. gonorrhoeae and N. meningitidis , suggesting a mechanism for cross-protection. To build off these findings, we performed comparative genomic analysis on 970 recent N. gonorrhoeae isolates collected through a U.S surveillance system against N. meningitidis serogroup B (NmB) reference sequences. We identified 1,525 proteins that were common to both Neisseria species, of which 57 proteins were predicted to be OMPs using in silico methods. Among the MenB-4C antigens, NhbA showed moderate sequence identity (73%) to the respective gonococcal homolog, was highly conserved within N. gonorrhoeae , and was predicted to be surface expressed. In contrast, the gonococcal FHbp was predicted not to be surface expressed, while NadA was absent in all N. gonorrhoeae isolates. Our work confirmed recent observations (E. A. Semchenko, A. Tan, R. Borrow, and K. L. Seib, Clin Infect Dis, 2018, https://doi.org/10.1093/cid/ciy1061 ) and describes homologous OMPs from a large panel of epidemiologically relevant N. gonorrhoeae strains in the United States against NmB reference strains. Based on our results, we report a set of OMPs that may contribute to the previously observed cross-protection and provide potential antigen targets to guide the next steps in gonorrhea vaccine development. IMPORTANCE Gonorrhea, a sexually transmitted disease, causes substantial global morbidity and economic burden. New prevention and control measures for this disease are urgently needed, as strains resistant to almost all classes of antibiotics available for treatment have emerged. Previous reports demonstrate that cross-protection from gonococcal infections may be conferred by meningococcal serogroup B (MenB) outer membrane vesicle (OMV)-based vaccines. Among 1,525 common proteins shared across the genomes of both N. gonorrhoeae and N. meningitidis , 57 proteins were predicted to be surface expressed (outer membrane proteins [OMPs]) and thus preferred targets for vaccine development. The majority of these OMPs showed high sequence identity between the 2 bacterial species. Our results provide valuable insight into the meningococcal antigens present in the current OMV-containing MenB-4C vaccine that may contribute to cross-protection against gonorrhea and may inform next steps in gonorrhea vaccine development.
Evidence of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to Cephalosporins or Azithromycin in the United States, 2014–2016
Given the lack of new antimicrobials or a vaccine, understanding the evolutionary dynamics of Neisseria gonorrhoeae is a significant public and global health priority. We investigated the emergence and spread of gonococcal strains with decreased susceptibility to cephalosporins and azithromycin using detailed genomic analyses of gonococcal isolates collected in the United States, 2014-2016. We sequenced genomes of 649 isolates collected through the Gonococcal Isolate Surveillance Project. We examined the genetic relatedness of isolates and assessed associations between clades and various genotypic and phenotypic combinations. We identified a large and clonal lineage of strains (MLST ST9363) associated with elevated azithromycin minimum inhibitory concentration (AZIem), characterized by a mosaic mtr locus (C substitution in the mtrR promoter, mosaic mtrR and mtrD). Mutations in 23S rRNA were sporadically distributed among AZIem strains. Another clonal group (MLST ST1901) possessed 7 unique PBP2 patterns, and it shared common mutations in other genes associated with cephalosporin resistance. Whole-genome sequencing methods can enhance monitoring of antimicrobial resistant gonococcal strains by identifying gonococcal populations containing mutations of concern. These methods could inform the development of point-of-care diagnostic tests designed to determine the specific antibiotic susceptibility profile of a gonococcal infection in a patient.
Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like mtr Efflux Pump Locus
Historically, after introduction of an antibiotic for treatment of gonorrhea, strains of N. gonorrhoeae emerge that display clinical resistance due to spontaneous mutation or acquisition of resistance genes. Genetic exchange between members of the Neisseria genus occurring by transformation can cause significant changes in gonococci that impact the structure of an antibiotic target or expression of genes involved in resistance. The results presented here provide a framework for understanding how mosaic-like DNA sequences from commensal Neisseria that recombine within the gonococcal mtr efflux pump locus function to decrease bacterial susceptibility to antimicrobials, including antibiotics used in therapy of gonorrhea. Recent reports suggest that mosaic-like sequences within the mtr ( m ultiple t ransferable r esistance) efflux pump locus of Neisseria gonorrhoeae , likely originating from commensal Neisseria sp. by transformation, can increase the ability of gonococci to resist structurally diverse antimicrobials. Thus, acquisition of numerous nucleotide changes within the mtrR gene encoding the transcriptional repressor (MtrR) of the mtrCDE efflux pump-encoding operon or overlapping promoter region for both along with those that cause amino acid changes in the MtrD transporter protein were recently reported to decrease gonococcal susceptibility to numerous antimicrobials, including azithromycin (Azi) (C. B. Wadsworth, B. J. Arnold, M. R. A. Satar, and Y. H. Grad, mBio 9:e01419-18, 2018, https://doi.org/10.1128/mBio.01419-18 ). We performed detailed genetic and molecular studies to define the mechanistic basis for why such strains can exhibit decreased susceptibility to MtrCDE antimicrobial substrates, including Azi. We report that a strong cis -acting transcriptional impact of a single nucleotide change within the −35 hexamer of the mtrCDE promoter as well gain-of-function amino acid changes at the C-terminal region of MtrD can mechanistically account for the decreased antimicrobial susceptibility of gonococci with a mosaic-like mtr locus. IMPORTANCE Historically, after introduction of an antibiotic for treatment of gonorrhea, strains of N. gonorrhoeae emerge that display clinical resistance due to spontaneous mutation or acquisition of resistance genes. Genetic exchange between members of the Neisseria genus occurring by transformation can cause significant changes in gonococci that impact the structure of an antibiotic target or expression of genes involved in resistance. The results presented here provide a framework for understanding how mosaic-like DNA sequences from commensal Neisseria that recombine within the gonococcal mtr efflux pump locus function to decrease bacterial susceptibility to antimicrobials, including antibiotics used in therapy of gonorrhea.
Considering the Potential Application of Whole Genome Sequencing to Gonorrhea Prevention and Control
Kirkcaldy et al investigate the questions of how such genomic data might inform gonorrhea public health prevention and control efforts. It particularly consider the potential use of Whole Genome Sequencing (WGS) for molecular detection of antimicrobial resistance (AMR) for informing clinical decision making and enhancing surveillance. And the use for informing programmatic action for gonorrhea control. They also consider what knowledge gaps that needs to be addressed and what barriers are need to be overcome.
Three-Dimensional Structure of Human Serum Albumin
The three-dimensional structure of human serum albumin has been solved at 6.0 angstrom (Å) resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42$_{1}$2 (unit cell constants a = b = 186.5 ± 0.5 Å and c = 81.0 ± 0.5 Å) and diffracted x-rays to lattice d-spacings of less than 2.9 Å. The electron density maps are of high quality and revealed the structure as a predominantly α-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.
Single-Molecule Force Spectroscopy Reveals a Stepwise Unfolding of Caenorhabditis elegans Giant Protein Kinase Domains
Myofibril assembly and disassembly are complex processes that regulate overall muscle mass. Titin kinase has been implicated as an initiating catalyst in signaling pathways that ultimately result in myofibril growth. In titin, the kinase domain is in an ideal position to sense mechanical strain that occurs during muscle activity. The enzyme is negatively regulated by intramolecular interactions occurring between the kinase catalytic core and autoinhibitory/regulatory region. Molecular dynamics simulations suggest that human titin kinase acts as a force sensor. However, the precise mechanism(s) resulting in the conformational changes that relieve the kinase of this autoinhibition are unknown. Here we measured the mechanical properties of the kinase domain and flanking Ig/Fn domains of the Caenorhabditis elegans titin-like proteins twitchin and TTN-1 using single-molecule atomic force microscopy. Our results show that these kinase domains have significant mechanical resistance, unfolding at forces similar to those for Ig/Fn β-sandwich domains (30–150 pN). Further, our atomic force microscopy data is consistent with molecular dynamic simulations, which show that these kinases unfold in a stepwise fashion, first an unwinding of the autoinhibitory region, followed by a two-step unfolding of the catalytic core. These data support the hypothesis that titin kinase may function as an effective force sensor.
Understanding metastatic SCCHN cells from unique genotypes to phenotypes with the aid of an animal model and DNA microarray analysis
Metastasis of squamous cell carcinoma of the head and neck (SCCHN) is a significant health-care problem worldwide. The 5-year survival rate is less than 50% for patients with lymph node metastases. Understanding the molecular basis of SCCHN metastasis would facilitate the development of new therapeutic approaches to the disease. To identify proteins that mediate SCCHN metastasis, we established a SCCHN xenograft mouse model and performed in vivo selection from a SCCHN cell line using the model. In the fourth round of in vivo selection, significant incidences of metastases in lymph nodes (7/10) and lungs (6/10) were achieved from a derived SCCHN cell line as compared with its parental cells, 1/5 in lymph nodes and 0/5 in lungs. Metastatic cell lines from lymph node metastases and parental cell lines from non-metastatic xenograft tumors were subjected to DNA microarray analysis using an Affymetrix gene chip HG-U133A, followed by data mining studies. The identified metastasis-related genes were further evaluated for their encoding protein products and the metastatic cells were examined by biological analyses. DNA microarray analysis highlighted molecular features of the metastatic SCCHN cells, including alteration of expression of cell-cell adhesion proteins, epithelial cell markers, apoptosis and cell cycle regulatory molecules. Further biological analyses of phenotypic alterations revealed that the metastatic cells gained epithelial-mesenchymal transition (EMT) features and were more resistant to anoikis, which are two of the important phenotypes for metastatic SCCHN.
A C. elegans Homolog of Huntingtin-Associated Protein 1 is Expressed in Chemosensory Neurons and in a Number of Other Somatic Cell Types
Huntingtin-associated protein 1 (HAP1) is a binding partner for huntingtin, the protein responsible for Huntington’s disease. In mammals, HAP1 is mostly found in brain where it is expressed in neurons. Although several functions have been proposed for HAP1, its role has not yet been clearly established. In this paper, we report on the identification of a HAP1 Caenorhabditis elegans homolog called T27A3.1. T27A3.1 shows conservation with rat and human HAP1, as well as with Milton, a Drosophila HAP1 homolog. To determine the cellular expression of T27A3.1 (multiple isoforms; a–e), we generated several transgenic worm lines expressing a fluorescent reporter protein [green fluorescent protein (GFP) and DsRed2] under the control of the promoter for T27A3.1. We have found that T27A3.1 is expressed in many cell types including a subset of chemosensory neurons in the head and tail. These include the amphid chemosensory neurons ASKL and R, ASIL and R, ADFL and ASEL, the phasmid neurons PHBL and R, and the CAN neurons that are required for worm survival.