Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Gerritsen, Wouter H"
Sort by:
Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology
by
van Haastert, Elise S.
,
Hoozemans, Jeroen J. M.
,
Gerritsen, Wouter H.
in
Aged
,
Aged, 80 and over
,
Alzheimer Disease - pathology
2016
Background
Alzheimer’s disease (AD) is the most common neurodegenerative disease. In addition to the occurrence of amyloid deposits and widespread tau pathology, AD is associated with a neuroinflammatory response characterized by the activation of microglia and astrocytes. Protein kinase 2 (CK2, former casein kinase II) is involved in a wide variety of cellular processes. Previous studies on CK2 in AD showed controversial results, and the involvement of CK2 in neuroinflammation in AD remains elusive.
Methods
In this study, we used immunohistochemical and immunofluorescent staining methods to investigate the localization of CK2 in the hippocampus and temporal cortex of patients with AD and non-demented controls. We compared protein levels with Western blotting analysis, and we investigated CK2 activity in human U373 astrocytoma cells and human primary adult astrocytes stimulated with IL-1β or TNF-α.
Results
We report increased levels of CK2 in the hippocampus and temporal cortex of AD patients compared to non-demented controls. Immunohistochemical analysis shows CK2 immunoreactivity in astrocytes in AD and control cases. In AD, the presence of CK2 immunoreactive astrocytes is increased. CK2 immunopositive astrocytes are associated with amyloid deposits, suggesting an involvement of CK2 in the neuroinflammatory response. In U373 cells and human primary astrocytes, the selective CK2 inhibitor CX-4945 shows a dose-dependent reduction of the IL-1β or TNF-α induced MCP-1 and IL-6 secretion.
Conclusions
This data suggests that CK2 in astrocytes is involved in the neuroinflammatory response in AD. The reduction in pro-inflammatory cytokine secretion by human astrocytes using the selective CK2 inhibitor CX-4945 indicates that CK2 could be a potential target to modulate neuroinflammation in AD.
Journal Article
Cholinergic imbalance in the multiple sclerosis hippocampus
by
Kooi, Evert-Jan
,
Prins, Marloes
,
Hoozemans, Jeroen J. M.
in
Acetylcholinesterase - metabolism
,
Adult
,
Aged
2011
Hippocampal pathology was shown to be extensive in multiple sclerosis (MS) and is associated with memory impairment. In this post-mortem study, we investigated hippocampal tissue from MS and Alzheimer’s disease (AD) patients and compared these to non-neurological controls. By means of biochemical assessment, (immuno)histochemistry and western blot analyses, we detected substantial alterations in the cholinergic neurotransmitter system in the MS hippocampus, which were different from those in AD hippocampus. In MS hippocampus, activity and protein expression of choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was decreased, while the activity and protein expression of acetylcholinesterase (AChE), the acetylcholine degrading enzyme, was found to be unaltered. In contrast, in AD hippocampus both ChAT and AChE enzyme activity and protein expression was decreased. Our findings reveal an MS-specific cholinergic imbalance in the hippocampus, which may be instrumental in terms of future treatment options for memory problems in this disease.
Journal Article
Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin
by
Amor, Sandra
,
Witte, Maarten E.
,
Gerritsen, Wouter H.
in
alpha-Crystallin B Chain - metabolism
,
Brain - immunology
,
Brain - pathology
2014
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
Journal Article
αB-Crystallin Is a Target for Adaptive Immune Responses and a Trigger of Innate Responses in Preactive Multiple Sclerosis Lesions
by
Amor, Sandra
,
Steinman, Lawrence
,
Gerritsen, Wouter H.
in
Biological and medical sciences
,
Medical sciences
,
Nervous system involvement in other diseases. Miscellaneous
2010
We present the first comparative analysis of serum immunoglobulinG reactivity profiles against the full spectrum of human myelin-associated proteins in multiple sclerosis patients and healthy control subjects. In both groups, serum antibodies display a consistent and prominent reaction to αB-crystallin (CRYAB) versus other myelin proteins. As an apparently major target for the adaptive immune system in humans, CRYAB selectively accumulates in oligodendrocytes, but not in astrocytes, or axons in so-called preactive multiple sclerosis lesions. These are clusters of activated HLA-DR-expressing microglia in myelinated normal-appearing white matter with no obvious leukocyte infiltration. They are found in most multiple sclerosis patients at all stages of disease. In these lesion areas, CRYAB in oligodendrocytes may come directly in contact with activated HLA-DR microglia. We demonstrate that CRYAB activates innate responses bymicroglia by stimulating the secretion of leukocyte-recruiting factors, including tumor necrosis factor, interleukin 17, CCL5, and CCL1, and immune-regulatory cytokines such as interleukin 10, transforming growth factor-β, and interleukin 13. Together, these data suggest that CRYAB accumulation in preactive lesions may be part of a reversible reparative local response that involves both oligodendrocytes and microglia. At the same time, however, accumulated CRYAB may represent a major target for adaptive immune responses that could contribute to progression of preactive lesions to a stage of demyelination.
Journal Article
Alpha-B-Crystallin Induces an Immune-Regulatory and Antiviral Microglial Response in Preactive Multiple Sclerosis Lesions
by
Amor, Sandra
,
Gerritsen, Wouter H.
,
Boddeke, Erik
in
Aged
,
Aged, 80 and over
,
alpha-Crystallin B Chain - metabolism
2013
ABSTRACTMicroglial nodules are frequently observed in the normal-appearing white matter of multiple sclerosis (MS) patients. Previously, we have shown that these clusters, which we call “preactive MS lesions,” are closely associated with stressed oligodendrocytes and myelin sheaths that contain markedly elevated levels of the small stress protein alpha-B-crystallin (HspB5). Here, we show that microglia in these lesions express the recently identified receptors for HspB5, that is, CD14, Toll-like receptor family 1 and 2 (TLR1 and TLR2), and several molecular markers of the microglial response to HspB5. These markers were identified by genome-wide transcript profiling of 12 primary human microglial cultures at 2 time points after exposure to HspB5. These data indicate that HspB5 activates production by microglia of an array of chemokines, immune-regulatory mediators, and a striking number of antiviral genes that are generally inducible by type I interferons. Together, our data suggest that preactive MS lesions are at least in part driven by HspB5 derived from stressed oligodendrocytes and may reflect a local attempt to restore tissue homeostasis.
Journal Article
Small heat shock proteins are induced during multiple sclerosis lesion development in white but not grey matter
by
Breur, Marjolein
,
Amor, Sandra
,
Peferoen-Baert, Regina M. B.
in
Adult
,
Aged
,
Aged, 80 and over
2015
Introduction
The important protective role of small heat-shock proteins (HSPs) in regulating cellular survival and migration, counteracting protein aggregation, preventing apoptosis, and regulating inflammation in the central nervous system is now well-recognized. Yet, their role in the neuroinflammatory disorder multiple sclerosis (MS) is largely undocumented. With the exception of alpha B-crystallin (HSPB5), little is known about the roles of small HSPs in disease.
Results
Here, we examined the expression of four small HSPs during lesion development in MS, focussing on their cellular distribution, and regional differences between white matter (WM) and grey matter (GM). It is well known that MS lesions in these areas differ markedly in their pathology, with substantially more intense blood-brain barrier damage, leukocyte infiltration and microglial activation typifying WM but not GM lesions.
We analysed transcript levels and protein distribution profiles for HSPB1, HSPB6, HSPB8 and HSPB11 in MS lesions at different stages, comparing them with normal-appearing brain tissue from MS patients and non-neurological controls. During active stages of demyelination in WM, and especially the centre of chronic active MS lesions, we found significantly increased expression of HSPB1, HSPB6 and HSPB8, but not HSPB11. When induced, small HSPs were exclusively found in astrocytes but not in oligodendrocytes, microglia or neurons. Surprisingly, while the numbers of astrocytes displaying high expression of small HSPs were markedly increased in actively demyelinating lesions in WM, no such induction was observed in GM lesions. This difference was particularly obvious in leukocortical lesions covering both WM and GM areas.
Conclusions
Since induction of small HSPs in astrocytes is apparently a secondary response to damage, their differential expression between WM and GM likely reflects differences in mediators that accompany demyelination in either WM or GM during MS. Our findings also suggest that during MS, cortical structures fail to benefit from the protective actions of small HSPs.
Journal Article
Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin
by
Amor, Sandra
,
Witte, Maarten E.
,
Gerritsen, Wouter H.
in
Hostages
,
Interferon
,
Multiple sclerosis
2014
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
Journal Article
Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-gamma and alpha B-crystallin
by
Peferoen, Laura A; N
,
Nacken, Peter J
,
Amor, Sandra
in
Brain
,
Laboratory animals
,
Multiple sclerosis
2014
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-[alpha], IL-6, IL-12, IL-1[beta] and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.[PUBLICATION ABSTRACT]
Journal Article
alphaB-Crystallin Is a Target for Adaptive Immune Responses and a Trigger of Innate Responses in Preactive Multiple Sclerosis Lesions
2010
We present the first comparative analysis of serum immunoglobulin G reactivity profiles against the full spectrum of human myelin-associated proteins in multiple sclerosis patients and healthy control subjects. In both groups, serum antibodies display a consistent and prominent reaction to alphaB-crystallin (CRYAB) versus other myelin proteins. As an apparently major target for the adaptive immune system in humans, CRYAB selectively accumulates in oligodendrocytes, but not in astrocytes, or axons in so-called preactive multiple sclerosis lesions. These are clusters of activated HLA-DR-expressing microglia in myelinated normal-appearing white matter with no obvious leukocyte infiltration. They are found in most multiple sclerosis patients at all stages of disease. In these lesion areas, CRYAB in oligodendrocytes may come directly in contact with activated HLA-DR+ microglia. We demonstrate that CRYAB activates innate responses by microglia by stimulating the secretion of leukocyte-recruiting factors, including tumor necrosis factor, interleukin 17, CCL5, and CCL1, and immune-regulatory cytokines such as interleukin 10, transforming growth factor-beta, and interleukin 13. Together, these data suggest that CRYAB accumulation in preactive lesions may be part of a reversible reparative local response that involves both oligodendrocytes and microglia. At the same time, however, accumulated CRYAB may represent a major target for adaptive immune responses that could contribute to progression of preactive lesions to a stage of demyelination.
Journal Article
Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions
by
Amor, Sandra
,
Steinman, Lawrence
,
Bsibsi, Malika
in
Adaptive Immunity - physiology
,
Adult
,
alpha-Crystallins - metabolism
2010
We present the first comparative analysis of serum immunoglobulin G reactivity profiles against the full spectrum of human myelin-associated proteins in multiple sclerosis patients and healthy control subjects. In both groups, serum antibodies display a consistent and prominent reaction to alphaB-crystallin (CRYAB) versus other myelin proteins. As an apparently major target for the adaptive immune system in humans, CRYAB selectively accumulates in oligodendrocytes, but not in astrocytes, or axons in so-called preactive multiple sclerosis lesions. These are clusters of activated HLA-DR-expressing microglia in myelinated normal-appearing white matter with no obvious leukocyte infiltration. They are found in most multiple sclerosis patients at all stages of disease. In these lesion areas, CRYAB in oligodendrocytes may come directly in contact with activated HLA-DR+ microglia. We demonstrate that CRYAB activates innate responses by microglia by stimulating the secretion of leukocyte-recruiting factors, including tumor necrosis factor, interleukin 17, CCL5, and CCL1, and immune-regulatory cytokines such as interleukin 10, transforming growth factor-beta, and interleukin 13. Together, these data suggest that CRYAB accumulation in preactive lesions may be part of a reversible reparative local response that involves both oligodendrocytes and microglia. At the same time, however, accumulated CRYAB may represent a major target for adaptive immune responses that could contribute to progression of preactive lesions to a stage of demyelination.
Journal Article