Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Gershkovich, Pavel"
Sort by:
Editorial: Lymphatic delivery and targeting of drugs, vaccines, and imaging agents
In addition to synthetic drug carriers, the author also introduced how endogenous lymphotropic macromolecules, such as lipoproteins, may be exploited for lymphatic drug delivery. In addition to providing potential benefit through enhanced delivery to pharmacological targets in the lymphatic system, lymphatic drug transport also offers a route for orally administered drugs to avoid hepatic first-pass metabolism and therefore enhance systemic bioavailability (Shackleford, Faassen et al., 2003). Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Dual Physiologically Based Pharmacokinetic Model of Liposomal and Nonliposomal Amphotericin B Disposition
ABSTRACT Purpose To investigate the biodistribution of amphotericin B (AmB) in mice and rats following administration of liposomal AmB (AmBisome®) using a physiologically-based pharmacokinetic (PBPK) modeling framework and to utilize this approach for predicting AmBisome® pharmacokinetics in human tissues. Methods AmB plasma and tissue concentration-time data, following single and multiple intravenous administration of nonliposomal and liposomal AmB to mice and rats, were extracted from literature. The whole-body PBPK model was constructed and incorporated nonliposomal and liposomal subcompartments. Various structural models for individual organs were evaluated. Allometric relationships were incorporated into the model to scale parameters based on species body weight. Results A non-Michaelis-Menten mechanism was included into the structure of the liver and spleen liposomal compartments to describe saturable uptake of particles by the reticuloendothelial system. The model successfully described plasma and tissue pharmacokinetics of AmB after administration of AmBisome® to rats and mice. Conclusions The dual PBPK model demonstrated good predictive performance by reasonably simulating AmB exposure in human tissues. This modeling framework can be potentially utilized for optimizing AmBisome® therapy in humans and for investigating pathophysiological factors controlling AmB pharmacokinetics and pharmacodynamics.
Thapsigargin Is a Broad-Spectrum Inhibitor of Major Human Respiratory Viruses: Coronavirus, Respiratory Syncytial Virus and Influenza A Virus
The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.
Strawberry Decreases Intraluminal and Intestinal Wall Hydrolysis of Testosterone Undecanoate
Male hypogonadism is often treated by testosterone (T) replacement therapy such as oral administration of the ester prodrug, testosterone undecanoate (TU). However, the systemic exposure to T following oral TU is very low due to esterase-mediated metabolism, particularly in the small intestine. The aim of this work was to examine the esterase-inhibitory effect of natural fruit extract of strawberry (STW) on the intestinal degradation of TU as a potential approach to increasing the oral bioavailability of T. Herein, the hydrolysis of TU was assessed in fasted state simulated intestinal fluid with added esterase activity (FaSSIF/ES) and Caco-2 cell homogenates in the presence of STW extract. It is noteworthy that STW substantially inhibited the degradation of TU in FaSSIF/ES and Caco-2 cell homogenates at concentrations that could be achieved following oral consumption of less than one serving of STW fruit. This can significantly increase the fraction of unhydrolyzed TU in the intestinal lumen as well as in enterocytes. In addition, it was demonstrated that TU has high intestinal lymphatic transport potential as the association of TU with plasma-derived human chylomicrons was in the range of 84%. Therefore, oral co-administration of TU with STW could potentially increase the intestinal stability of TU and consequently the contribution of lymphatically delivered TU to the systemic exposure of T in vivo.
Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents
Glioblastoma multiforme (GBM) is an aggressive cancer with poor prognosis, partly due to resistance to the standard chemotherapy treatment, temozolomide (TMZ). Phytocannabinoid cannabidiol (CBD) has exhibited anti-cancer effects against GBM, however, CBD's ability to overcome common resistance mechanisms to TMZ have not yet been investigated. 4'-Fluoro-cannabidiol (4'-F-CBD, or HUF-101/PECS-101) is a derivative of CBD, that exhibits increased activity compared to CBD during in vivo behavioural studies. This anti-cancer activity of cannabinoids against GBM cells sensitive to and representing major resistance mechanisms to TMZ was investigated. Cannabinoids were also studied in combination with imidazotetrazine agents, and advanced mass spectrometry with the 3D OrbiSIMS was used to investigate the mechanism of action of CBD. CBD and 4'-F-CBD were found to overcome two major resistance mechanisms (methylguanine DNA-methyltransferase (MGMT) overexpression and DNA mismatch repair (MMR)-deficiency). Synergistic responses were observed when cells were exposed to cannabinoids and imidazotetrazine agents. Synergy increased with T25 and 4'-F-CBD. 3D OrbiSIMS analysis highlighted the presence of methylated-DNA, a previously unknown anti-cancer mechanism of action of CBD. This work demonstrates the anti-cancer activity of 4'-F-CBD and the synergy of cannabinoids with imidazotetrazine agents for the first time and expands understanding of CBD mechanism of action.
Application of In Vivo MRI Imaging to Track a Coated Capsule and Its Disintegration in the Gastrointestinal Tract in Human Volunteers
Oral specially coated formulations have the potential to improve treatment outcomes of a range of diseases in distal intestinal tract whilst limiting systemic drug absorption and adverse effects. Their development is challenging, partly because of limited knowledge of the physiological and pathological distal gastrointestinal factors, including colonic chyme fluid distribution and motor function. Recently, non-invasive techniques such as magnetic resonance imaging (MRI) have started to provide novel important insights. In this feasibility study, we formulated a coated capsule consisting of a hydroxypropyl methylcellulose (HPMC) shell, coated with a synthetic polymer based on polymethacrylate-based copolymer (Eudragit®) that can withstand the upper gastrointestinal tract conditions. The capsule was filled with olive oil as MRI-visible marker fluid. This allowed us to test the ability of MRI to track such a coated capsule in the gastrointestinal tract and to assess whether it is possible to image its loss of integrity by exploiting the ability of MRI to image fat and water separately and in combination. Ten healthy participants were administered capsules with varying amounts of coating and underwent MRI imaging of the gastrointestinal tract at 45 min intervals. The results indicate that it is feasible to track the capsules present in the gastrointestinal tract at different locations, as they were detected in all 10 participants. By the 360 min endpoint of the study, in nine participants the capsules were imaged in the small bowel, in eight participants in the terminal ileum, and in four in the colon. Loss of capsule integrity was observed in eight participants, occurring predominantly in distal intestinal regions. The data indicate that the described approach could be applied to assess performance of oral formulations in undisturbed distal gastrointestinal regions, without the need for ionizing radiation or contrast agents.
Inclusion of Medium-Chain Triglyceride in Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo Performance Remains Superior with Pure Sesame Oil Vehicle
Oral sesame oil-based formulation facilitates the delivery of poorly water-soluble drug cannabidiol (CBD) to the lymphatic system and blood circulation. However, this natural oil-based formulation also leads to considerable variability in absorption of CBD. In this work, the performance of lipid-based formulations with the addition of medium-chain triglyceride (MCT) or surfactants to the sesame oil vehicle has been tested in vitro and in vivo using CBD as a model drug. The in vitro lipolysis has shown that addition of the MCT leads to a higher distribution of CBD into the micellar phase. Further addition of surfactants to MCT-containing formulations did not improve distribution of the drug into the micellar phase. In vivo, formulations containing MCT led to lower or similar concentrations of CBD in serum, lymph and MLNs, but with reduced variability. MCT improves the emulsification and micellar solubilization of CBD, but surfactants did not facilitate further the rate and extent of lipolysis. Even though addition of MCT reduces the variability, the in vivo performance for the extent of both lymphatic transport and systemic bioavailability remains superior with a pure natural oil vehicle.
Predicting Intestinal and Hepatic First-Pass Metabolism of Orally Administered Testosterone Undecanoate
The bioavailability of orally administered drugs could be impacted by intestinal and hepatic first-pass metabolism. Testosterone undecanoate (TU), an orally administered ester prodrug of testosterone, is significantly subjected to first-pass metabolism. However, the individual contribution of intestinal and hepatic first-pass metabolism is not well determined. Therefore, the aim of the current study was to predict the metabolic contribution of each site. The hydrolysis–time profiles of TU incubation in human liver microsomes and Caco-2 cell homogenate were used to predict hepatic and intestinal first-pass metabolism, respectively. The in vitro half-life (t1/2 inv) for the hydrolysis of TU in microsomal mixtures was 28.31 ± 3.51 min. By applying the “well-stirred” model, the fraction of TU that could escape hepatic first-pass metabolism (FH) was predicted as 0.915 ± 0.009. The incubation of TU in Caco-2 cell homogenate yielded t1/2 inv of 109.28 ± 21.42 min, which was applied in a “Q gut” model to estimate the fraction of TU that would escape intestinal first-pass metabolism (FG) as 0.114 ± 0.02. Accordingly, only 11% of the absorbed fraction of TU could escape intestinal metabolism, while 91% can pass through hepatic metabolism. Hence, compared to the liver, the intestinal wall is the main site where TU is significantly metabolised during first-pass effect.
Highly Effective Oral Amphotericin B Formulation against Murine Visceral Leishmaniasis
Visceral leishmaniasis is a deadly parasitic disease caused by obligate intramacrophage protozoans of the Leishmania genus. The World Health Organization estimates the annual death toll to be 50,000, with 500,000 new cases each year. Without treatment, visceral leishmaniasis is inevitably fatal. For the last 70 years, the first line of defense has been pentavalent antimonials; however, increased resistance has brought amphotericin B to the forefront of treatment options. Unfortunately, the difficult route of drug administration, toxicity issues, and cost prevent amphotericin B from reaching the infected population, and mortality continues to rise. Our reformulation of amphotericin B for oral administration has resulted in a highly efficacious antileishmanial treatment that significantly reduces or eradicates liver parasitemia in a murine model of visceral leishmaniasis. This formulation has overcome amphotericin B's significant physicochemical barriers to absorption and holds promise for the development of a self-administered oral therapy for the treatment of visceral leishmaniasis.
The Interplay Between Liver First-Pass Effect and Lymphatic Absorption of Cannabidiol and Its Implications for Cannabidiol Oral Formulations
For highly lipophilic drugs, passage into the intestinal lymphatic system rather than the portal vein following oral administration may represent a major alternative route of delivery into the general circulation. Increasing intestinal lymphatic transport provides an effective strategy to improve oral bioavailability when hepatic first-pass metabolism is a major rate-limiting step hampering access to the systemic circulation after oral dosing. The transfer of orally administered, highly lipid-soluble drugs to the lymphatic system is mediated by their association with chylomicrons, large intestinal lipoproteins that are assembled in the enterocytes in the presence of long-chain triglycerides or long-chain fatty acids. Due to its very high lipophilicity, cannabidiol (CBD) has physicochemical features (e.g. log P  = 6.3) consistent with an oral absorption mediated at least in part by transport via the intestinal lymphatic system. CBD also undergoes extensive first-pass hepatic metabolism. Formulation changes favoring diversion of orally absorbed CBD from the portal to the lymphatic circulation pathway can result in reduced first-pass liver metabolism, enhanced oral bioavailability, and reduced intra- and intersubject variability in systemic exposure. In this manuscript, we discuss (1) evidence for CBD undergoing hepatic first-pass liver metabolism and lymphatic absorption to a clinically important extent; (2) the potential interplay between improved oral absorption, diversion of orally absorbed drug to the lymphatic system, and magnitude of presystemic elimination in the liver; and (3) strategies by which innovative chemical and/or pharmaceutical delivery systems of CBD with improved bioavailability could be developed.