Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Gerstberger, Thomas"
Sort by:
BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design
2019
Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.
A structure-based design allows the development of a potent PROTAC to degrade BAF ATPase subunits SMARCA2 and SMARCA4 via recruitment of E3 ubiquitin ligase VHL and induce cancer cell death.
Journal Article
Drugging an undruggable pocket on KRAS
by
Gerstberger, Thomas
,
Hoffmann, Johann
,
Pearson, Mark
in
60 APPLIED LIFE SCIENCES
,
Biological Sciences
,
Cell Biology
2019
The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be “undruggable,” between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.
Journal Article
A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo
by
Gerstberger, Thomas
,
Chetta, Paolo
,
Wurm, Melanie
in
631/154/309/2420
,
631/337/100/102
,
631/45/474/2085
2022
Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.
Protein degraders are an emerging drug modality; however, their properties lie beyond typical drug-like space. Here the authors report optimisation via structure-based exit vector and linker design towards the VHL-recruiting PROTAC ACBI2, an orally bioavailable and selective degrader of SMARCA2.
Journal Article
Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition
2016
Acute myeloid leukemia (AML) cells require BRD9 to regulate
MYC
gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of
BRD9
limits AML cell growth.
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain
MYC
transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of
BRD9
that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of
EZH2
. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.
Journal Article
Drugit: crowd-sourcing molecular design of non-peptidic VHL binders
by
Gerstberger, Thomas
,
Schmalhorst, Philipp S.
,
Magarkar, Aniket
in
631/114/2248
,
631/45/468
,
631/535/1267
2025
Building on the role of human intuition in small molecule drug design, we explored whether crowdsourcing could recruit citizen scientists to this task while in parallel building awareness for this scientific process. Here, we introduce Drugit (
https://drugit.org
), the small molecule design mode of the online citizen science game Foldit. We demonstrate its utility by identifying distinct binders to the von Hippel Lindau E3 ligase. Several thousand molecules were suggested by players in a series of ten puzzle rounds. The proposed molecules were further evaluated in silico and manually by an expert panel. Selected candidates were synthesized and tested. One of these molecules shows dose-dependent shift perturbations in protein-observed NMR experiments. The co-crystal structure in complex with the E3 ligase reveals that the observed binding mode matches the player’s original idea. The completion of one full design cycle is a proof of concept for the Drugit approach and highlights the potential of involving citizen scientists in early drug discovery.
Citizen science taps the efforts of non-experts. Here, authors describe Drugit, an extension of the crowdsourcing game Foldit, and its use in designing a non-peptide binder of Von Hippel Lindau E3 ligase for use with proteolysis targeting chimeras.
Journal Article
Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins
by
Gerstberger, Thomas
,
Panse, Vikram Govind
,
Küster, Bernhard
in
Active Transport, Cell Nucleus - physiology
,
Biological Transport
,
Biomedical and Life Sciences
2003
The ubiquitin-like protein SUMO-1 (small ubiquitin-related modifier 1) is covalently attached to substrate proteins by ligases and cleaved by isopeptidases. Yeast has two SUMO-1-deconjugating enzymes, Ulp1 and Ulp2, which are located at nuclear pores and in the nucleoplasm, respectively. Here we show that the catalytic C-domain of Ulp1 must be excluded from the nucleoplasm for cell viability. This is achieved by the noncatalytic N-domain, which tethers Ulp1 to the nuclear pores. The bulk of cellular Ulp1 is not associated with nucleoporins but instead associates with three karyopherins (Pse1, Kap95 and Kap60), in a complex that is not dissociated by RanGTP
in vitro
. The Ulp1 N-domain has two distinct binding sites for Pse1 and Kap95/Kap60, both of which are required for anchoring to the nuclear pore complex. We propose that Ulp1 is tethered to the nuclear pores by a Ran-insensitive interaction with karyopherins associated with nucleoporins. This location could allow Ulp1 to remove SUMO-1 from sumoylated cargo proteins during their passage through the nuclear pore channel.
Journal Article
The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML
2018
Bromodomain and extra-terminal (BET) protein inhibitors have been reported as treatment options for acute myeloid leukemia (AML) in preclinical models and are currently being evaluated in clinical trials. This work presents a novel potent and selective BET inhibitor (BI 894999), which has recently entered clinical trials (NCT02516553). In preclinical studies, this compound is highly active in AML cell lines, primary patient samples, and xenografts.
HEXIM1
is described as an excellent pharmacodynamic biomarker for target engagement in tumors as well as in blood. Mechanistic studies show that BI 894999 targets super-enhancer-regulated oncogenes and other lineage-specific factors, which are involved in the maintenance of the disease state. BI 894999 is active as monotherapy in AML xenografts, and in addition leads to strongly enhanced antitumor effects in combination with CDK9 inhibitors. This treatment combination results in a marked decrease of global p-Ser2 RNA polymerase II levels and leads to rapid induction of apoptosis in vitro and in vivo. Together, these data provide a strong rationale for the clinical evaluation of BI 894999 in AML.
Journal Article
Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3
by
Gerstberger, Thomas
,
Neumüller, Ralph A.
,
Barsyte-Lovejoy, Dalia
in
631/154
,
631/154/309/2420
,
631/535
2019
Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the
WHSC1L1
gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.
A chemical probe BI-9321 for the PWWP1 domain of NSD3 and its inactive analog were identified. BI-9321 binds to the methyl-lysine binding site, reduces the association of NSD3 with chromatin and inhibits proliferation of acute myeloid leukemia cells.
Journal Article
REPLY TO TRAN ET AL
by
Gerstberger, Thomas
,
Hoffmann, Johann
,
Pearson, Mark
in
Biological Sciences
,
Cell Biology
,
Chemistry
2020
Journal Article
Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling
by
Gerstberger, Thomas
,
Fett, Thomas N.
,
Neumüller, Ralph A.
in
Crystal structure
,
Drug development
,
Kinases
2022
Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.Neumüller and colleagues identify and characterize potent HER2 exon 20 insertion-selective inhibitors with efficacy, which preserve wild-type epidermal growth factor receptor signaling in preclinical models of non-small cell lung cancer in vivo.
Journal Article