Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Gerstmayr, E"
Sort by:
Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser
The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date, there is no unanimously accepted theoretical solution for ultrahigh intensities and little or no experimental data. The basic challenge is the inclusion of the self-interaction of the electron with the field emitted by the electron itself—the so-called radiation reaction force. We report here on the experimental evidence of strong radiation reaction, in an all-optical experiment, during the propagation of highly relativistic electrons (maximum energy exceeding 2 GeV) through the field of an ultraintense laser (peak intensity of4×1020W/cm2). In their own rest frame, the highest-energy electrons experience an electric field as high as one quarter of the critical field of quantum electrodynamics and are seen to lose up to 30% of their kinetic energy during the propagation through the laser field. The experimental data show signatures of quantum effects in the electron dynamics in the external laser field, potentially showing departures from the constant cross field approximation.
Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γrays), consistent with a quantum description of radiation reaction. The generatedγrays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energyϵcrit>30MeV.
Single particle detection system for strong-field QED experiments
Measuring signatures of strong-field quantum electrodynamics (SF-QED) processes in an intense laser field is an experimental challenge: it requires detectors to be highly sensitive to single electrons and positrons in the presence of the typically very strong x-ray and γ -photon background levels. In this paper, we describe a particle detector capable of diagnosing single leptons from SF-QED interactions and discuss the background level simulations for the upcoming Experiment-320 at FACET-II (SLAC National Accelerator Laboratory). The single particle detection system described here combines pixelated scintillation LYSO screens and a Cherenkov calorimeter. We detail the performance of the system using simulations and a calibration of the Cherenkov detector at the ELBE accelerator. Single 3 GeV leptons are expected to produce approximately 537 detectable photons in a single calorimeter channel. This signal is compared to Monte-Carlo simulations of the experiment. A signal-to-noise ratio of 18 in a single Cherenkov calorimeter detector is expected and a spectral resolution of 2% is achieved using the pixelated LYSO screens.
Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures
Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained v ia X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3  μ m of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.
A laser–plasma platform for photon–photon physics: the two photon Breit–Wheeler process
We describe a laser–plasma platform for photon–photon collision experiments to measure fundamental quantum electrodynamic processes. As an example we describe using this platform to attempt to observe the linear Breit–Wheeler process. The platform has been developed using the Gemini laser facility at the Rutherford Appleton Laboratory. A laser Wakefield accelerator and a bremsstrahlung convertor are used to generate a collimated beam of photons with energies of hundreds of MeV, that collide with keV x-ray photons generated by a laser heated plasma target. To detect the pairs generated by the photon–photon collisions, a magnetic transport system has been developed which directs the pairs onto scintillation-based and hybrid silicon pixel single particle detectors (SPDs). We present commissioning results from an experimental campaign using this laser–plasma platform for photon–photon physics, demonstrating successful generation of both photon sources, characterisation of the magnetic transport system and calibration of the SPDs, and discuss the feasibility of this platform for the observation of the Breit–Wheeler process. The design of the platform will also serve as the basis for the investigation of strong-field quantum electrodynamic processes such as the nonlinear Breit–Wheeler and the Trident process, or eventually, photon–photon scattering.
Parametric study of high-energy ring-shaped electron beams from a laser wakefield accelerator
Laser wakefield accelerators commonly produce on-axis, low-divergence, high-energy electron beams. However, a high charge, annular shaped beam can be trapped outside the bubble and accelerated to high energies. Here we present a parametric study on the production of low-energy-spread, ultra-relativistic electron ring beams in a two-stage gas cell. Ring-shaped beams with energies higher than 750 MeV are observed simultaneously with on axis, continuously injected electrons. Often multiple ring shaped beams with different energies are produced and parametric studies to control the generation and properties of these structures were conducted. Particle tracking and particle-in-cell simulations are used to determine properties of these beams and investigate how they are formed and trapped outside the bubble by the wake produced by on-axis injected electrons. These unusual femtosecond duration, high-charge, high-energy, ring electron beams may find use in beam driven plasma wakefield accelerators and radiation sources.
Model-independent inference of laser intensity
An ultrarelativistic electron beam passing through an intense laser pulse emits radiation around its direction of propagation into a characteristic angular profile. Here, we show that measurement of the variances of this profile in the planes parallel and perpendicular to the laser polarization, and the mean initial and final energies of the electron beam, allows the intensity of the laser pulse to be inferred in a way that is independent of the model of the electron dynamics. The method presented applies whether radiation reaction is important or not, and whether it is classical or quantum in nature, with an accuracy of a few percent across 3 orders of magnitude in intensity. It is tolerant of electron beams with a broad energy spread and finite divergence. In laser-electron-beam collision experiments, where spatiotemporal fluctuations cause the alignment of the beams to vary from shot to shot, this permits inference of the laser intensity at the collision point, thereby facilitating comparisons between theoretical calculations and experimental data.
Single-Shot Reconstruction of Electron Beam Longitudinal Phase Space in a Laser Wakefield Accelerator
We report on a single-shot longitudinal phase-space reconstruction diagnostic for electron beams in a laser wakefield accelerator via the experimental observation of distinct periodic modulations in the angularly resolved spectra. Such modulated angular spectra arise as a result of the direct interaction between the ultrarelativistic electron beam and the laser driver in the presence of the wakefield. A constrained theoretical model for the coupled oscillator, assisted by a genetic algorithm, can recreate the experimental electron spectra and, thus, fully reconstructs the longitudinal phase-space distribution of the electron beam with a temporal resolution of approximately 1.3 fs. In particular, it reveals the slice energy spread of the electron beam, which is important to measure for applications such as x-ray free electron lasers. In our experiment, the root-mean-square energy spread retrieved is bounded at 9.9 MeV, corresponding to a 0.9%–3.0% relative spread, despite the overall GeV energy beam having approximately 100% relative energy spread.
Laser wakefield accelerator modelling with variational neural networks
A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.
Effect of electron-beam energy chirp on signatures of radiation reaction in laser-based experiments
Current experiments investigating radiation reaction employ high energy electron beams together with tightly focused laser pulses in order to reach the quantum regime, as expressed through the quantum nonlinearity parameter χ. Such experiments are often complicated by the large number of latent variables, including the precise structure of the electron bunch. Here we examine a correlation between the electron spatial and energy distributions, called an energy chirp, investigate its significance to the laser-electron beam interaction and show that the resulting effect cannot be trivially ignored when analyzing current experiments. In particular, we show that the energy chirp has a large effect on the second central moment of the electron energy, but a lesser impact on the first electron energy moment or the photon critical energy. These results show the importance of improved characterization and control over electron bunch parameters on a shot-to-shot basis in such experiments.