Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Ghayvat, Hemant"
Sort by:
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.
Histogram of Oriented Gradient-Based Fusion of Features for Human Action Recognition in Action Video Sequences
Human Action Recognition (HAR) is the classification of an action performed by a human. The goal of this study was to recognize human actions in action video sequences. We present a novel feature descriptor for HAR that involves multiple features and combining them using fusion technique. The major focus of the feature descriptor is to exploits the action dissimilarities. The key contribution of the proposed approach is to built robust features descriptor that can work for underlying video sequences and various classification models. To achieve the objective of the proposed work, HAR has been performed in the following manner. First, moving object detection and segmentation are performed from the background. The features are calculated using the histogram of oriented gradient (HOG) from a segmented moving object. To reduce the feature descriptor size, we take an averaging of the HOG features across non-overlapping video frames. For the frequency domain information we have calculated regional features from the Fourier hog. Moreover, we have also included the velocity and displacement of moving object. Finally, we use fusion technique to combine these features in the proposed work. After a feature descriptor is prepared, it is provided to the classifier. Here, we have used well-known classifiers such as artificial neural networks (ANNs), support vector machine (SVM), multiple kernel learning (MKL), Meta-cognitive Neural Network (McNN), and the late fusion methods. The main objective of the proposed approach is to prepare a robust feature descriptor and to show the diversity of our feature descriptor. Though we are using five different classifiers, our feature descriptor performs relatively well across the various classifiers. The proposed approach is performed and compared with the state-of-the-art methods for action recognition on two publicly available benchmark datasets (KTH and Weizmann) and for cross-validation on the UCF11 dataset, HMDB51 dataset, and UCF101 dataset. Results of the control experiments, such as a change in the SVM classifier and the effects of the second hidden layer in ANN, are also reported. The results demonstrate that the proposed method performs reasonably compared with the majority of existing state-of-the-art methods, including the convolutional neural network-based feature extractors.
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network
Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.
DBGC: Dimension-Based Generic Convolution Block for Object Recognition
The object recognition concept is being widely used a result of increasing CCTV surveillance and the need for automatic object or activity detection from images or video. Increases in the use of various sensor networks have also raised the need of lightweight process frameworks. Much research has been carried out in this area, but the research scope is colossal as it deals with open-ended problems such as being able to achieve high accuracy in little time using lightweight process frameworks. Convolution Neural Networks and their variants are widely used in various computer vision activities, but most of the architectures of CNN are application-specific. There is always a need for generic architectures with better performance. This paper introduces the Dimension-Based Generic Convolution Block (DBGC), which can be used with any CNN to make the architecture generic and provide a dimension-wise selection of various height, width, and depth kernels. This single unit which uses the separable convolution concept provides multiple combinations using various dimension-based kernels. This single unit can be used for height-based, width-based, or depth-based dimensions; the same unit can even be used for height and width, width and depth, and depth and height dimensions. It can also be used for combinations involving all three dimensions of height, width, and depth. The main novelty of DBGC lies in the dimension selector block included in the proposed architecture. Proposed unoptimized kernel dimensions reduce FLOPs by around one third and also reduce the accuracy by around one half; semi-optimized kernel dimensions yield almost the same or higher accuracy with half the FLOPs of the original architecture, while optimized kernel dimensions provide 5 to 6% higher accuracy with around a 10 M reduction in FLOPs.
Smart Aging System: Uncovering the Hidden Wellness Parameter for Well-Being Monitoring and Anomaly Detection
Background: Ambiguities and anomalies in the Activity of Daily Living (ADL) patterns indicate deviations from Wellness. The monitoring of lifestyles could facilitate remote physicians or caregivers to give insight into symptoms of the disease and provide health improvement advice to residents; Objective: This research work aims to apply lifestyle monitoring in an ambient assisted living (AAL) system by diagnosing conduct and distinguishing variation from the norm with the slightest conceivable fake alert. In pursuing this aim, the main objective is to fill the knowledge gap of two contextual observations (i.e., day and time) in the frequent behavior modeling for an individual in AAL. Each sensing category has its advantages and restrictions. Only a single type of sensing unit may not manage composite states in practice and lose the activity of daily living. To boost the efficiency of the system, we offer an exceptional sensor data fusion technique through different sensing modalities; Methods: As behaviors may also change according to other contextual observations, including seasonal, weather (or temperature), and social interaction, we propose the design of a novel activity learning model by adding behavioral observations, which we name as the Wellness indices analysis model; Results: The ground-truth data are collected from four elderly houses, including daily activities, with a sample size of three hundred days plus sensor activation. The investigation results validate the success of our method. The new feature set from sensor data fusion enhances the system accuracy to (98.17% ± 0.95) from (80.81% ± 0.68). The performance evaluation parameters of the proposed model for ADL recognition are recorded for the 14 selected activities. These parameters are Sensitivity (0.9852), Specificity (0.9988), Accuracy (0.9974), F1 score (0.9851), False Negative Rate (0.0130).
Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging
Oral mucosal lesions (OML) and oral potentially malignant disorders (OPMDs) have been identified as having the potential to transform into oral squamous cell carcinoma (OSCC). This research focuses on the human-in-the-loop-system named Healthcare Professionals in the Loop (HPIL) to support diagnosis through an advanced machine learning procedure. HPIL is a novel system approach based on the textural pattern of OML and OPMDs (anomalous regions) to differentiate them from standard regions of the oral cavity by using autofluorescence imaging. An innovative method based on pre-processing, e.g., the Deriche–Canny edge detector and circular Hough transform (CHT); a post-processing textural analysis approach using the gray-level co-occurrence matrix (GLCM); and a feature selection algorithm (linear discriminant analysis (LDA)), followed by k-nearest neighbor (KNN) to classify OPMDs and the standard region, is proposed in this paper. The accuracy, sensitivity, and specificity in differentiating between standard and anomalous regions of the oral cavity are 83%, 85%, and 84%, respectively. The performance evaluation was plotted through the receiver operating characteristics of periodontist diagnosis with the HPIL system and without the system. This method of classifying OML and OPMD areas may help the dental specialist to identify anomalous regions for performing their biopsies more efficiently to predict the histological diagnosis of epithelial dysplasia.
Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living
Air pollution has been a looming issue of the 21st century that has also significantly impacted the surrounding environment and societal health. Recently, previous studies have conducted extensive research on air pollution and air quality monitoring. Despite this, the fields of air pollution and air quality monitoring remain plagued with unsolved problems. In this study, the Pollution Weather Prediction System (PWP) is proposed to perform air pollution prediction for outdoor sites for various pollution parameters. In the presented research work, we introduced a PWP system configured with pollution-sensing units, such as SDS021, MQ07-CO, NO2-B43F, and Aeroqual Ozone (O3). These sensing units were utilized to collect and measure various pollutant levels, such as PM2.5, PM10, CO, NO2, and O3, for 90 days at Symbiosis International University, Pune, Maharashtra, India. The data collection was carried out between the duration of December 2019 to February 2020 during the winter. The investigation results validate the success of the presented PWP system. In the conducted experiments, linear regression and artificial neural network (ANN)-based AQI (air quality index) predictions were performed. Furthermore, the presented study also found that the customized linear regression methodology outperformed other machine-learning methods, such as linear, ridge, Lasso, Bayes, Huber, Lars, Lasso-lars, stochastic gradient descent (SGD), and ElasticNet regression methodologies, and the customized ANN regression methodology used in the conducted experiments. The overall AQI values of the air pollutants were calculated based on the summation of the AQI values of all the presented air pollutants. In the end, the web and mobile interfaces were developed to display air pollution prediction values of a variety of air pollutants.
Akshar Mitra: a multimodal integrated framework for early dyslexia detection
Developmental dyslexia is a prevalent neurobiological disorder affecting 10%-15% of children globally, yet it remains largely undiagnosed due to the inaccessibility of conventional assessments in resource-limited settings. Existing screening methods are further constrained by their reliance on unimodal data streams and the need for large, clinically-labeled datasets. This paper presents Akshar Mitra, a Multimodal Integrated Framework (MMF), a novel computational methodology designed for accessible and early dyslexia screening. The framework pioneers the integration of three low-cost, high-yield digital biomarkers derived from eye-tracking, speech, and handwriting analysis.The MMF is implemented through three modules: webcam-based eye-tracking for fixation and saccadic analysis, automated speech assessment for fluency metrics, and optical character recognition for handwriting error detection. Each module extracts 4-6 interpretable features (e.g., fixation regressions, word-error rate, character reversals) that are standardized via a shared data schema. These objective measures are augmented by a concise behavioral questionnaire to generate a holistic risk profile. Beyond screening, the system incorporates support tools, including a dyslexia-friendly reading interface with syllable-level highlighting, to foster user engagement and confidence.By creating a scalable, language-agnostic, and explainable system, this work offers a viable pathway to bridge the global dyslexia diagnostic gap. The MMF provides a transformative tool for proactive screening, facilitating early intervention and improving educational outcomes.
Smart aging monitoring and early dementia recognition (SAMEDR): uncovering the hidden wellness parameter for preventive well-being monitoring to categorize cognitive impairment and dementia in community-dwelling elderly subjects through AI
Reasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research work distinguishes care needs, dangers and monitors the effect of dementia on an individual. This research contrasts in ADL design execution between dementia-affected people and other healthy elderly with heterogeneous sensors. More than 300,000 sensors associated activation data were collected from the dementia patients and healthy controls with wellness sensors networks. Generated ADLs were envisioned and understood through the activity maps, diversity and other wellness parameters to categorize wellness healthy, and dementia affected the elderly. Diversity was significant between diseased and healthy subjects. Heterogeneous unobtrusive sensor data evaluate behavioral patterns associated with ADL, helpful to reveal the impact of cognitive degradation, to measure ADL variation throughout dementia. The primary focus of activity recognition in the current research is to transfer dementia subject occupied homes models to generalized age-matched healthy subject data models to utilize new services, label classified datasets and produce limited datasets due to less training. Current research proposes a novel Smart Aging Monitoring and Early Dementia Recognition system that provides the exchange of data models between dementia subject occupied homes (DSOH) to healthy subject occupied homes (HSOH) in a move to resolve the deficiency of training data. At that point, the key attributes are mapped onto each other utilizing a sensor data fusion that assures to retain the diversities between various HSOH & DSOH by diminishing the divergence between them. Moreover, additional tests have been conducted to quantify the excellence of the offered framework: primary, in contradiction of the precision of feature mapping techniques; next, computing the merit of categorizing data at DSOH; and, the last, the aptitude of the projected structure to function thriving due to noise data. The outcomes show encouraging pointers and highlight the boundaries of the projected approach.
CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope
Computer vision is becoming an increasingly trendy word in the area of image processing. With the emergence of computer vision applications, there is a significant demand to recognize objects automatically. Deep CNN (convolution neural network) has benefited the computer vision community by producing excellent results in video processing, object recognition, picture classification and segmentation, natural language processing, speech recognition, and many other fields. Furthermore, the introduction of large amounts of data and readily available hardware has opened new avenues for CNN study. Several inspirational concepts for the progress of CNN have been investigated, including alternative activation functions, regularization, parameter optimization, and architectural advances. Furthermore, achieving innovations in architecture results in a tremendous enhancement in the capacity of the deep CNN. Significant emphasis has been given to leveraging channel and spatial information, with a depth of architecture and information processing via multi-path. This survey paper focuses mainly on the primary taxonomy and newly released deep CNN architectures, and it divides numerous recent developments in CNN architectures into eight groups. Spatial exploitation, multi-path, depth, breadth, dimension, channel boosting, feature-map exploitation, and attention-based CNN are the eight categories. The main contribution of this manuscript is in comparing various architectural evolutions in CNN by its architectural change, strengths, and weaknesses. Besides, it also includes an explanation of the CNN’s components, the strengths and weaknesses of various CNN variants, research gap or open challenges, CNN applications, and the future research direction.