Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
144
result(s) for
"Ghislain, Marc"
Sort by:
genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop
by
Marc Ghislain
,
Tina Kyndt
,
Robert Jarret
in
Agricultural land
,
Agrobacterium
,
Agrobacterium - genetics
2015
Significance We communicate the rather remarkable observation that among 291 tested accessions of cultivated sweet potato, all contain one or more transfer DNA (T-DNA) sequences. These sequences, which are shown to be expressed in a cultivated sweet potato clone (“Huachano”) that was analyzed in detail, suggest that an Agrobacterium infection occurred in evolutionary times. One of the T-DNAs is apparently present in all cultivated sweet potato clones, but not in the crop’s closely related wild relatives, suggesting the T-DNA provided a trait or traits that were selected for during domestication. This finding draws attention to the importance of plant–microbe interactions, and given that this crop has been eaten for millennia, it may change the paradigm governing the “unnatural” status of transgenic crops.
Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world’s arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp. were discovered. Simple and quantitative PCR, Southern blotting, genome walking, and bacterial artificial chromosome library screening and sequencing unambiguously demonstrated that two different T-DNA regions ( Ib T-DNA1 and Ib T-DNA2) are present in the cultivated sweet potato ( Ipomoea batatas [L.] Lam.) genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant. Ib T-DNA1 was found to contain four open reading frames (ORFs) homologous to the tryptophan-2-monooxygenase ( iaaM ), indole-3-acetamide hydrolase ( iaaH ), C-protein ( C-prot ), and agrocinopine synthase ( Acs ) genes of Agrobacterium spp. Ib T-DNA1 was detected in all 291 cultigens examined, but not in close wild relatives. Ib T-DNA2 contained at least five ORFs with significant homology to the ORF14 , ORF17n , rooting locus ( Rol ) B/RolC , ORF13 , and ORF18/ORF17n genes of A. rhizogenes . Ib T-DNA2 was detected in 45 of 217 genotypes that included both cultivated and wild species. Our finding, that sweet potato is naturally transgenic while being a widely and traditionally consumed food crop, could affect the current consumer distrust of the safety of transgenic food crops.
Journal Article
Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement
2018
Sweetpotato [
Ipomoea batatas
(L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives,
I. trifida
and
I. triloba
, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of
Ipomoea
and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.
Sweetpotato is an important food security crop providing rich source of macro- and micronutrients including carbohydrates and vitamins. Here, the authors assemble of the two diploid relatives of cultivated sweetpotato and identify genes and alleles associated with carotenoid biosynthesis from breeding lines.
Journal Article
Ex ante economic impact assessment of the 3R-gene potato in Kenya
by
Gatto, Marcel
,
Kihiu, Evelyne
,
Ghislain, Marc
in
Agricultural production
,
Agriculture
,
Agriculture - economics
2025
Potato late-blight disease is as a major constraint to potato production in Kenya. The use of fungicides to control the disease is limited by the practice of delaying application until the symptoms are visible, and inappropriate application rates and methods. Biotech crops, such as 3R-gene potato, are providing sustainable solutions to crop protection challenges in agriculture, but little is known about their social and economic potential in any country. To gain greater insights into the potential of 3R-gene potato in Kenya, this study evaluates the economic benefits of Asante, Shangi, and Tigoni potato varieties, which are resistant to late blight. Data from experts along the potato value chain and secondary sources are analyzed using the economic surplus model and a real options model. First, experts’ opinions revealed that late-blight disease is responsible for 23% of production loss annually, and that 12% of the production costs are due to the use of fungicides to control late blight disease. Secondly, the study results suggest that the release of 3R-gene Shangi would generate the greatest economic benefits of KES 845.9 million (US $ 8.2 million) annually. The expected net benefits of 3R-gene Asante are KES 7.3 million (US$0.07 million) annually. 3R-gene Tigoni, with the lowest potential adoption rates, would be expected to realize a negative net of KES of -1.26 million (US$ -0.01 million) annually. Significant potential economic gains, which is expected to increase with better awareness of biotech crops, support the immediate release of 3R-gene Shangi in Kenya.
Journal Article
Identification of T-DNA structure and insertion site in transgenic crops using targeted capture sequencing
2023
The commercialization of GE crops requires a rigorous safety assessment, which includes a precise DNA level characterization of inserted T-DNA. In the past, several strategies have been developed for identifying T-DNA insertion sites including, Southern blot and different PCR-based methods. However, these methods are often challenging to scale up for screening of dozens of transgenic events and for crops with complex genomes, like potato. Here, we report using target capture sequencing (TCS) to characterize the T-DNA structure and insertion sites of 34 transgenic events in potato. This T-DNA is an 18 kb fragment between left and right borders and carries three resistance (R) genes ( RB , Rpi-blb2 and Rpi-vnt1.1 genes) that result in complete resistance to late blight disease. Using TCS, we obtained a high sequence read coverage within the T-DNA and junction regions. We identified the T-DNA breakpoints on either ends for 85% of the transgenic events. About 74% of the transgenic events had their T-DNA with 3 R gene sequences intact. The flanking sequences of the T-DNA were from the potato genome for half of the transgenic events, and about a third (11) of the transgenic events have a single T-DNA insertion mapped into the potato genome, of which five events do not interrupt an existing potato gene. The TCS results were confirmed using PCR and Sanger sequencing for 6 of the best transgenic events representing 20% of the transgenic events suitable for regulatory approval. These results demonstrate the wide applicability of TCS for the precise T-DNA insertion characterization in transgenic crops.
Journal Article
RNA interference: a promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus
by
Pertry, Ine
,
Niblett, Chuck
,
Gheysen, Godelieve
in
631/337/505
,
631/601/1466
,
Administration, Oral
2016
The African sweetpotato weevil
Cylas brunneus
is one of the most devastating pests affecting the production of sweetpotatoes, an important staple food in Sub-Saharan Africa. Current available control methods against this coleopteran pest are limited. In this study, we analyzed the potential of RNA interference as a novel crop protection strategy against this insect pest. First, the
C. brunneus
transcriptome was sequenced and RNAi functionality was confirmed by successfully silencing the
laccase2
gene. Next, 24 potential target genes were chosen, based on their critical role in vital biological processes. A first screening via injection of gene-specific dsRNAs showed that the dsRNAs were highly toxic for
C. brunneus
. Injected doses of 200ng/mg body weight led to mortality rates of 90% or higher for 14 of the 24 tested genes after 14 days. The three best performing dsRNAs, targeting
prosα2, rps13
and the homolog of
Diabrotica virgifera snf7
, were then used in further feeding trials to investigate RNAi by oral delivery. Different concentrations of dsRNAs mixed with artificial diet were tested and concentrations as low as 1 μg dsRNA/ mL diet led to significant mortality rates higher than 50%.These results proved that dsRNAs targeting essential genes show great potential to control
C. brunneus
.
Journal Article
Transcriptome Analysis and Systemic RNAi Response in the African Sweetpotato Weevil (Cylas puncticollis, Coleoptera, Brentidae)
2015
The African sweetpotato weevil (SPW) Cylas puncticollis Boheman is one of the most important constraints of sweetpotato production in Sub-Saharan Africa and yet is largely an uncharacterized insect pest. Here, we report on the transcriptome analysis of SPW generated using an Illumina platform. More than 213 million sequencing reads were obtained and assembled into 89,599 contigs. This assembly was followed by a gene ontology annotation. Subsequently, a transcriptome search showed that the necessary RNAi components relevant to the three major RNAi pathways, were found to be expressed in SPW. To address the functionality of the RNAi mechanism in this species, dsRNA was injected into second instar larvae targeting laccase2, a gene which encodes an enzyme involved in the sclerotization of insect exoskeleton. The body of treated insects showed inhibition of sclerotization, leading eventually to death. Quantitative Real Time PCR (qPCR) confirmed this phenotype to be the result of gene silencing. Together, our results provide valuable sequence data on this important insect pest and demonstrate that a functional RNAi pathway with a strong and systemic effect is present in SPW and can further be explored as a new strategy for controlling this important pest.
Journal Article
Extensive Simple Sequence Repeat Genotyping of Potato Landraces Supports a Major Reevaluation of Their Gene Pool Structure and Classification
by
Núñez, Jorge
,
Spooner, David M.
,
Ghislain, Marc
in
Base Sequence
,
Biological Sciences
,
Biological taxonomies
2007
Contrasting taxonomic treatments of potato landraces have continued over the last century, with the recognition of anywhere from 1 to 21 distinct Linnean species, or of Cultivar Groups within the single species Solanum tuberosum. We provide one of the largest molecular marker studies of any crop landraces to date, to include an extensive study of 742 landraces of all cultivated species (or Cultivar Groups) and 8 closely related wild species progenitors, with 50 nuclear simple sequence repeat (SSR) (also known as microsatellite) primer pairs and a plastid DNA deletion marker that distinguishes most lowland Chilean from upland Andean landraces. Neighbor-joining results highlight a tendency to separate three groups: (i) putative diploids, (ii) putative tetraploids, and (iii) the hybrid cultivated species S. ajanhuiri (diploid), S. juzepczukii (triploid), and S. curtilobum (pentaploid). However, there are many exceptions to grouping by ploidy. Strong statistical support occurs only for S. ajanhuiri, S. juzepczukii, and S. curtilobum. In combination with recent morphological analyses and an examination of the identification history of these collections, we support the reclassification of the cultivated potatoes into four species: (i) S. tuberosum, with two Cultivar Groups (Andigenum Group of upland Andean genotypes containing diploids, triploids, and tetraploids, and the Chilotanum Group of lowland tetraploid Chilean landraces); (ii) S. ajanhuiri (diploid); (iii) S. juzepczukii (triploid); and (iv) S. curtilobum (pentaploid). For other classifications, consistent and stable identifications are impossible, and their classification as species is artificial and only maintains the confusion of users of the gene banks and literature.
Journal Article
Nutritional and anti-nutritional compositional analysis of transgenic potatoes with late blight resistance
by
Magembe, Eric
,
Byarugaba, Arinaitwe Abel
,
Mwaura, Lucy
in
Bioengineering and Biotechnology
,
composition
,
Cooking
2024
Late blight, caused by the pathogen Phytophthora infestans , is a devastating disease affecting potato production globally, with adverse effects in Africa where limited access to fungicides exacerbates its impact. Outbreaks of late blight lead to reduced yields and substantial economic losses to potato farmers and agricultural systems. The development of resistant potato varieties, tailored to African agroecological conditions, offers a viable solution in mitigating the devastating effects of late blight on potato cultivation. Leading to this study, two consumer-preferred varieties, Victoria and Shangi, with high susceptibility to late blight were targeted for conferring late blight resistance through genetic engineering. This was achieved by inserting R genes from wild relatives of potato displaying resistance to the disease. The intended effect of conferring resistance to the late blight disease has been consistently observed over twenty experimental field trials spanning 8 years at three locations in Uganda and Kenya. In this study, we assessed whether the genetic transformation has led to any significant unintended effects on the nutritional and anti-nutritional composition of potato tubers compared to the non-transgenic controls grown under the same agroecological conditions. The compositional assessments were conducted on commercial-size potato tubers harvested from regulatory trials at three locations in Uganda and Kenya. Statistical analysis was conducted using two-way analysis of variance comparing transgenic and non-transgenic samples. Overall, the results showed that the transgenic and non-transgenic samples exhibited similar levels of nutritional and antinutritional components. Variations detected in the levels of the analysed components fell within the expected ranges as documented in existing literature and potato composition databases. Thus, we conclude that there are no biologically significant differences in the nutritional and anti-nutritional composition of transgenic and non-transgenic potato tubers engineered for resistance to late blight.
Journal Article
Comparative Phenotypic and Agronomic Assessment of Transgenic Potato with 3R-Gene Stack with Complete Resistance to Late Blight Disease
by
Jjemba, Douglas Mutebi
,
Faith, Aharinta Kenneth
,
Magembe, Eric
in
Agricultural production
,
agronomic performance
,
agronomic traits
2021
Transgenic potato event Vic.172, expressing three naturally occurring resistance genes (R genes) conferring complete protection against late blight disease, was evaluated for resistance to late blight, phenotypic characterization, and agronomic performance in field conditions at three locations during three seasons in Uganda. These trials were conducted by comparison to the variety Victoria from which Vic.172 derives, using identical fungicide treatment, except when evaluating disease resistance. During all seasons, the transgenic event Vic.172 was confirmed to have complete resistance to late blight disease, whereas Victoria plants were completely dead by 60–80 days after planting. Tubers from Vic.172 were completely resistant to LB after artificial inoculation. The phenotypic characterization included observations of the characteristics and development of the stems, leaves, flowers, and tubers. Differences in phenotypic parameters between Vic.172 and Victoria were not statistically significant across locations and seasons. The agronomic performance observations covered sprouting, emergence, vigor, foliage growth, and yield. Differences in agronomic performance were not statistically significant except for marketable yield in one location under high productivity conditions. However, yield variation across locations and seasons was not statistically significant, but was influenced by the environment. Hence, the results of the comparative assessment of the phenotype and agronomic performance revealed that transgenic event Vic.172 did not present biologically significant differences in comparison to the variety Victoria it derives from.
Journal Article
Robust and highly informative microsatellite-based genetic identity kit for potato
by
Núñez, Jorge
,
del Rosario Herrera, María
,
Guzman, Frank
in
Alleles
,
Biomedical and Life Sciences
,
Biotechnology
2009
The fingerprinting of 742 potato landraces with 51 simple sequence repeat (SSR, or microsatellite) markers resulted in improving a previously constructed potato genetic identity kit. All SSR marker loci were assayed with a collection of highly diverse landraces of all species of cultivated potato with ploidies ranging from diploid to pentaploid. Loci number, amplification reproducibility, and polymorphic information content were recorded. Out of 148 SSR markers of which 30 are new, we identified 58 new SSR marker locations on at least one of three potato genetic linkage maps. These results permitted the selection of a new potato genetic identity kit based on 24 SSR markers with two per chromosome separated by at least 10 cM, single locus, high polymorphic information content, and high quality of amplicons as determined by clarity and reproducibility. The comparison of a similarity matrix of 742 landraces obtained with the 24 SSR markers of the new kit and with the entire dataset of 51 SSR markers showed a high correlation (
r
= 0.94) by a Mantel test and even higher correlations (
r
= 0.99) regarding topological comparisons of major branches of a neighbor joining tree. This new potato genetic identity kit is able to discriminate 93.5% of the 742 landraces compared to 98.8% with 51 SSR markers. In addition, we made a marker-specific set of allele size standards that conveniently and unambiguously provide accurate sizing of all alleles of the 24 SSR markers across laboratories and platforms. The new potato genetic identity kit will be of particular utility to standardize the choice and allele sizing of microsatellites in potato and aid in collaborative projects by allowing cumulative analysis of independently generated data.
Journal Article