Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Gibbard, Louise"
Sort by:
Human ACE2 transgenic pigs are susceptible to SARS-CoV-2 and develop COVID-19-like disease
Animal models that accurately reflect COVID-19 are vital for understanding mechanisms of disease and advancing development of improved vaccines and therapeutics. Pigs are increasingly recognized as valuable models for human disease due to their genetic, anatomical, physiological, and immunological similarities to humans, and they present a more ethically viable alternative to non-human primates. However, pigs are not susceptible to SARS-CoV-2 infection which limits their utility as a model. To address this, we have developed transgenic pigs expressing human ACE2 that are susceptible to SARS-CoV-2 infection. Following challenge, clinical signs consistent with COVID-19, including fever, coughing and respiratory distress were observed, with virus replication detected in the nasal turbinates, trachea and lungs up to the study endpoint, seven days post-infection. Notably, examination of tissues revealed immunopathology in the lungs consistent with histological changes observed in fatal human COVID-19 cases. This study establishes human ACE2 transgenic pigs as a large animal model that accurately reflects many aspects of COVID-19 disease. Long Fung Chau and colleagues report the generation of transgenic pigs expressing human ACE2, and show that they exhibit clinical signs and immunopathology consistent with COVID-19 following infection with SARS-CoV-2, suggesting that human ACE2 transgenic pigs are a viable large animal model for COVID-19.
Rabbits are not resistant to prion infection
The ability of prions to infect some species and not others is determined by the transmission barrier. This unexplained phenomenon has led to the belief that certain species were not susceptible to transmissible spongiform encephalopathies (TSEs) and therefore represented negligible risk to human health if consumed. Using the protein misfolding cyclic amplification (PMCA) technique, we were able to overcome the species barrier in rabbits, which have been classified as TSE resistant for four decades. Rabbit brain homogenate, either unseeded or seeded in vitro with disease-related prions obtained from different species, was subjected to serial rounds of PMCA. De novo rabbit prions produced in vitro from unseeded material were tested for infectivity in rabbits, with one of three intracerebrally challenged animals succumbing to disease at 766 d and displaying all of the characteristics of a TSE, thereby demonstrating that leporids are not resistant to prion infection. Material from the brain of the clinically affected rabbit containing abnormal prion protein resulted in a 100% attack rate after its inoculation in transgenic mice overexpressing rabbit PrP. Transmissibility to rabbits (>470 d) has been confirmed in 2 of 10 rabbits after intracerebral challenge. Despite rabbits no longer being able to be classified as resistant to TSEs, an outbreak of \"mad rabbit disease\" is unlikely.
Tissue atlas of Cryptosporidium parvum infection reveals contrasts between the natural neonatal calf model and laboratory mouse models
Cryptosporidium is an apicomplexan parasite that causes diarrhoeal disease. The species C. parvum is zoonotic and causes significant morbidity and mortality for both humans and farm animals; most commonly, calves and lambs. A One Health approach that integrates human, animal and environmental health perspectives is required to tackle this disease. Current treatments are limited and ineffective, meaning there is an urgent need to develop new anti-cryptosporidials both for human and animal health. The neonatal calf model is a natural model of infection employed as a tool for drug discovery or generating parasite material. However, the model is seldom utilised to investigate host-parasite interaction. Fundamental information about this model, including the location of the parasite in the gut, is lacking. It is also unclear how the more commonly utilised immunocompromised mouse models of cryptosporidiosis compare to the neonatal calf model. To address this, we established an acute, moderate experimental C. parvum infection in neonatal calves. Using transgenic parasites, we created a tissue atlas of infection for neonatal calf gut and immunocompromised mouse models and mapped and quantified infection to draw robust comparisons between models. Cryptosporidium infection was observed at high levels throughout the neonatal calf gastrointestinal tract and was not limited to the ileal-cecal junction, as previously suggested. This infection pattern is most similar to the acute cryptosporidiosis mouse model, interferon-gamma knockout mice (IFNγKO). Infection with transgenic parasites allowed us to perform in vivo and ex vivo tissue imaging of the chronic cryptosporidiosis mouse model, NOD SCID Gamma KO (NSG) mice. In contrast, in NSG mice infection is low in the small intestines and highest in the caecum and colon. Understanding the true distribution of infection in the gastrointestinal tract of these three key animal models provides new perspectives on how to interpret and design drug efficacy studies and provides new insight into host-pathogen interaction.
Tips for leading in a diverse academic environment
Dr. Louise Root-Robbins, director of diversity and community outreach initiatives at the University of Wisconsin-Madison school of nursing, told WIHE we've barely begun to peel the layers of the diversity onion. [...] she'd be happy to drop the buzzwords altogether. Culture has many elements, some more visible than others: ethnicity, gender, social and economic status, age, sexual orientation, family status, religion, education, ability or disability, and more.