Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
125 result(s) for "Gibbons, Robert V."
Sort by:
Serotype-Specific Differences in the Risk of Dengue Hemorrhagic Fever: An Analysis of Data Collected in Bangkok, Thailand from 1994 to 2006
It is unclear whether dengue serotypes differ in their propensity to cause severe disease. We analyzed differences in serotype-specific disease severity in children presenting for medical attention in Bangkok, Thailand. Prospective studies were conducted from 1994 to 2006. Univariate and multivariate logistic and multinomial logistic regressions were used to determine if dengue hemorrhagic fever (DHF) and signs of severe clinical disease (pleural effusion, ascites, thrombocytopenia, hemoconcentration) were associated with serotype. Crude and adjusted odds ratios were calculated. There were 162 (36%) cases with DENV-1, 102 (23%) with DENV-2, 123 (27%) with DENV-3, and 64 (14%) with DENV-4. There was no significant difference in the rates of DHF by serotype: DENV-2 (43%), DENV-3 (39%), DENV-1 (34%), DENV-4 (31%). DENV-2 was significantly associated with increased odds of DHF grade I compared to DF (OR 2.9 95% CI 1.1, 8.0), when using DENV-1 as the reference. Though not statistically significant, DENV-2 had an increased odds of total DHF and DHF grades II, III, and IV. Secondary serologic response was significantly associated with DHF (OR 6.2) and increased when considering more severe grades of DHF. DENV-2 (9%) and -4 (3%) were significantly less often associated with primary disease than DENV-1 (28%) and -3 (33%). Restricting analysis to secondary cases, we found DENV-2 and DENV-3 to be twice as likely to result in DHF as DEN-4 (p = 0.05). Comparing study years, we found the rate of DHF to be significantly less in 1999, 2000, 2004, and 2005 than in 1994, the study year with the highest percentage of DHF cases, even when controlling for other variables. As in other studies, we find secondary disease to be strongly associated with DHF and with more severe grades of DHF. DENV-2 appears to be marginally associated with more severe dengue disease as evidenced by a significant association with DHF grade I when compared to DENV-1. In addition, we found non-significant trends with other grades of DHF. Restricting the analysis to secondary disease we found DENV-2 and -3 to be twice as likely to result in DHF as DEN-4. Differences in severity by study year may suggest that other factors besides serotype play a role in disease severity.
Dengue diversity across spatial and temporal scales
A fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the mechanisms by which strains interact and compete across spatial scales. Phylogeographic methods have been used to characterize pathogen dispersal at global and regional scales but have yielded few insights into the local spatiotemporal structure of endemic transmission. Using geolocated genotype (800 cases) and serotype (17,291 cases) data, we show that in Bangkok, Thailand, 60% of dengue cases living <200 meters apart come from the same transmission chain, as opposed to 3% of cases separated by 1 to 5 kilometers. At distances <200 meters from a case (encompassing an average of 1300 people in Bangkok), the effective number of chains is 1.7. This number rises by a factor of 7 for each 10-fold increase in the population of the ÒenclosedÓ region. This trend is observed regardless of whether population density or area increases, though increases in density over 7000 people per square kilometer do not lead to additional chains. Within Thailand these chains quickly mix, and by the next dengue season viral lineages are no longer highly spatially structured within the country. In contrast, viral flow to neighboring countries is limited. These findings are consistent with local, density-dependent transmission and implicate densely populated communities as key sources of viral diversity, with home location the focal point of transmission. These findings have important implications for targeted vector control and active surveillance.
The Impact of the Demographic Transition on Dengue in Thailand: Insights from a Statistical Analysis and Mathematical Modeling
An increase in the average age of dengue hemorrhagic fever (DHF) cases has been reported in Thailand. The cause of this increase is not known. Possible explanations include a reduction in transmission due to declining mosquito populations, declining contact between human and mosquito, and changes in reporting. We propose that a demographic shift toward lower birth and death rates has reduced dengue transmission and lengthened the interval between large epidemics. Using data from each of the 72 provinces of Thailand, we looked for associations between force of infection (a measure of hazard, defined as the rate per capita at which susceptible individuals become infected) and demographic and climactic variables. We estimated the force of infection from the age distribution of cases from 1985 to 2005. We find that the force of infection has declined by 2% each year since a peak in the late 1970s and early 1980s. Contrary to recent findings suggesting that the incidence of DHF has increased in Thailand, we find a small but statistically significant decline in DHF incidence since 1985 in a majority of provinces. The strongest predictor of the change in force of infection and the mean force of infection is the median age of the population. Using mathematical simulations of dengue transmission we show that a reduced birth rate and a shift in the population's age structure can explain the shift in the age distribution of cases, reduction of the force of infection, and increase in the periodicity of multiannual oscillations of DHF incidence in the absence of other changes. Lower birth and death rates decrease the flow of susceptible individuals into the population and increase the longevity of immune individuals. The increase in the proportion of the population that is immune increases the likelihood that an infectious mosquito will feed on an immune individual, reducing the force of infection. Though the force of infection has decreased by half, we find that the critical vaccination fraction has not changed significantly, declining from an average of 85% to 80%. Clinical guidelines should consider the impact of continued increases in the age of dengue cases in Thailand. Countries in the region lagging behind Thailand in the demographic transition may experience the same increase as their population ages. The impact of demographic changes on the force of infection has been hypothesized for other diseases, but, to our knowledge, this is the first observation of this phenomenon. Please see later in the article for the Editors' Summary.
Determinants of Inapparent and Symptomatic Dengue Infection in a Prospective Study of Primary School Children in Kamphaeng Phet, Thailand
Dengue viruses are a major cause of morbidity in tropical and subtropical regions of the world. Inapparent dengue is an important component of the overall burden of dengue infection. It provides a source of infection for mosquito transmission during the course of an epidemic, yet by definition is undetected by health care providers. Previous studies of inapparent or subclinical infection have reported varying ratios of symptomatic to inapparent dengue infection. In a prospective study of school children in Northern Thailand, we describe the spatial and temporal variation of the symptomatic to inapparent (S:I) dengue illness ratio. Our findings indicate that there is a wide fluctuation in this ratio between and among schools in a given year and within schools over several dengue seasons. The most important determinants of this S:I ratio for a given school were the incidence of dengue infection in a given year and the incidence of infection in the preceding year. We found no association between the S:I ratio and age in our population. Our findings point to an important aspect of virus-host interactions at either a population or individual level possibly due to an effect of heterotypic cross-reactive immunity to reduce dengue disease severity. These findings have important implications for future dengue vaccines.
Neuropathogenesis of Japanese Encephalitis in a Primate Model
Japanese encephalitis (JE) is a major cause of mortality and morbidity for which there is no treatment. In addition to direct viral cytopathology, the inflammatory response is postulated to contribute to the pathogenesis. Our goal was to determine the contribution of bystander effects and inflammatory mediators to neuronal cell death. Material from a macaque model was used to characterize the inflammatory response and cytopathic effects of JE virus (JEV). Intranasal JEV infection induced a non-suppurative encephalitis, dominated by perivascular, infiltrates of mostly T cells, alongside endothelial cell activation, vascular damage and blood brain barrier (BBB) leakage; in the adjacent parenchyma there was macrophage infiltration, astrocyte and microglia activation. JEV antigen was mostly in neurons, but there was no correlation between intensity of viral infection and degree of inflammatory response. Apoptotic cell death occurred in both infected and non-infected neurons. Interferon-α, which is a microglial activator, was also expressed by both. Tumour Necrosis Factor-α, inducible nitric oxide synthase and nitrotyrosine were expressed by microglial cells, astrocytes and macrophages. The same cells expressed matrix metalloproteinase (MMP)-2 whilst MMP-9 was expressed by neurons. The results are consistent with JEV inducing neuronal apoptotic death and release of cytokines that initiate microglial activation and release of pro-inflammatory and apoptotic mediators with subsequent apoptotic death of both infected and uninfected neurons. Activation of astrocytes, microglial and endothelial cells likely contributes to inflammatory cell recruitment and BBB breakdown. It appears that neuronal apoptotic death and activation of microglial cells and astrocytes play a crucial role in the pathogenesis of JE.
A Prospective Nested Case-Control Study of Dengue in Infants: Rethinking and Refining the Antibody-Dependent Enhancement Dengue Hemorrhagic Fever Model
Dengue hemorrhagic fever (DHF) is the severe and life-threatening syndrome that can develop after infection with any one of the four dengue virus (DENV) serotypes. DHF occurs almost exclusively in individuals with secondary heterologous DENV infections and infants with primary DENV infections born to dengue immune mothers. The widely accepted explanation for the pathogenesis of DHF in these settings, particularly during infancy, is antibody-dependent enhancement (ADE) of DENV infection. We conducted a prospective nested case-control study of DENV infections during infancy. Clinical data and blood samples were collected from 4,441 mothers and infants in up to two pre-illness study visits, and surveillance was performed for symptomatic and inapparent DENV infections. Pre-illness plasma samples were used to measure the associations between maternally derived anti-DENV3 antibody-neutralizing and -enhancing capacities at the time of DENV3 infection and development of infant DHF. The study captured 60 infants with DENV infections across a wide spectrum of disease severity. DENV3 was the predominant serotype among the infants with symptomatic (35/40) and inapparent (15/20) DENV infections, and 59/60 infants had a primary DENV infection. The estimated in vitro anti-DENV3 neutralizing capacity at birth positively correlated with the age of symptomatic primary DENV3 illness in infants. At the time of symptomatic DENV3 infection, essentially all infants had low anti-DENV3 neutralizing activity (50% plaque reduction neutralizing titers [PRNT(50)] 50 is associated with protection from symptomatic DENV3 illness. We did not find a significant association between DENV3 ADE activity at illness onset and the development of DHF compared with less severe symptomatic illness. The results of this study should encourage rethinking or refinement of the current ADE pathogenesis model for infant DHF and stimulate new directions of research into mechanisms responsible for the development of DHF during infancy. ClinicalTrials.gov NCT00377754.
Revealing the microscale spatial signature of dengue transmission and immunity in an urban population
It is well-known that the distribution of immunity in a population dictates the future incidence of infectious disease, but this process is generally understood at individual or macroscales. For example, herd immunity to multiple pathogens has been observed at national and city levels. However, the effects of population immunity have not previously been shown at scales smaller than the city (e.g., neighborhoods). In particular, no study has shown long-term effects of population immunity at scales consistent with the spatial scale of person-to-person transmission. Here, we use the location of dengue patients' homes in Bangkok with the serotype of the infecting pathogen to investigate the spatiotemporal distribution of disease risk at small spatial scales over a 5-y period. We find evidence for localized transmission at distances of under 1 km. We also observe patterns of spatiotemporal dependence consistent with the expected impacts of homotypic immunity, heterotypic immunity, and immune enhancement of disease at these distances. Our observations indicate that immunological memory of dengue serotypes occurs at the neighborhood level in this large urban setting. These methods have broad applications to studying the spatiotemporal structure of disease risk where pathogen serotype or genetic information is known.
Prediction of Dengue Disease Severity among Pediatric Thai Patients Using Early Clinical Laboratory Indicators
Dengue virus is endemic in tropical and sub-tropical resource-poor countries. Dengue illness can range from a nonspecific febrile illness to a severe disease, Dengue Shock Syndrome (DSS), in which patients develop circulatory failure. Earlier diagnosis of severe dengue illnesses would have a substantial impact on the allocation of health resources in endemic countries. We compared clinical laboratory findings collected within 72 hours of fever onset from a prospective cohort children presenting to one of two hospitals (one urban and one rural) in Thailand. Classification and regression tree analysis was used to develop diagnostic algorithms using different categories of dengue disease severity to distinguish between patients at elevated risk of developing a severe dengue illness and those at low risk. A diagnostic algorithm using WBC count, percent monocytes, platelet count, and hematocrit achieved 97% sensitivity to identify patients who went on to develop DSS while correctly excluding 48% of non-severe cases. Addition of an indicator of severe plasma leakage to the WHO definition led to 99% sensitivity using WBC count, percent neutrophils, AST, platelet count, and age. This study identified two easily applicable diagnostic algorithms using early clinical indicators obtained within the first 72 hours of illness onset. The algorithms have high sensitivity to distinguish patients at elevated risk of developing severe dengue illness from patients at low risk, which included patients with mild dengue and other non-dengue febrile illnesses. Although these algorithms need to be validated in other populations, this study highlights the potential usefulness of specific clinical indicators early in illness.
Preexisting Japanese Encephalitis Virus Neutralizing Antibodies and Increased Symptomatic Dengue Illness in a School-Based Cohort in Thailand
Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) have significant cross-reactivity in serological assays; the clinical implications of this remain undefined. An improved understanding of whether and how JEV immunity modulates the clinical outcome of DENV infection is important as large-scale DENV vaccine trials will commence in areas where JEV is co-endemic and/or JEV immunization is routine. The association between preexisting JEV neutralizing antibodies (NAbs) and the clinical severity of DENV infection was evaluated in a prospective school-based cohort in Thailand that captured asymptomatic, non-hospitalized, and hospitalized DENV infections. Covariates considered included age, baseline DENV antibody status, school of attendance, epidemic year, and infecting DENV serotype. 942 children experienced at least one DENV infection between 1998 and 2002, out of 3,687 children who were enrolled for at least one full year. In crude analysis, the presence of JEV NAbs was associated with an increased occurrence of symptomatic versus asymptomatic infection (odds ratio [OR]= 1.55, 95% CI: 1.08-2.23) but not hospitalized illness or dengue hemorrhagic fever (DHF). The association was strongest in children with negative DENV serology (DENV-naive) (OR=2.75, 95% CI: 1.12-6.72), for whom the presence of JEV NAbs was also associated with a symptomatic illness of longer duration (5.4 days for JEV NAb+ versus 2.6 days for JEV NAb-, p=0.048). JEV NAbs were associated with increased DHF in younger children with multitypic DENV NAb profiles (OR=4.05, 95% CI: 1.18 to 13.87). Among those with JEV NAbs, the association with symptomatic illness did not vary by antibody titer. The prior existence of JEV NAbs was associated with an increased probability of symptomatic as compared to asymptomatic DENV illness. These findings are in contrast to previous studies suggesting an attenuating effect of heterologous flavivirus immunity on DENV disease severity.
Dengue Hemorrhagic Fever: The Sensitivity and Specificity of the World Health Organization Definition for Identification of Severe Cases of Dengue in Thailand, 1994–2005
Background. Dengue virus infection causes a spectrum of clinical manifestations, usually classified according to the World Health Organization (WHO) guidelines into dengue fever (DF) and dengue hemorrhagic fever (DHF). The ability of these guidelines to categorize severe dengue illness has recently been questioned. Methods. We evaluated dengue case definitions in a prospective study at a pediatric hospital in Bangkok, Thailand, during 1994–2005. One thousand thirteen children were enrolled within the first 3 days after onset of fever and observed with standardized data collection. Cases were classified on the basis of application of the strict WHO criteria. All dengue virus infections were laboratory confirmed. We retrospectively grouped patients on the basis of whether they received significant intervention based on fluid replacement and/or requirements for blood transfusion. Results. Eighty-five (58%) of 150 persons with DHF, 40 (15%) of 264 with DF, and 73 (12%) of 599 with other febrile illnesses (OFIs) received significant intervention. Sixty-eight percent of dengue cases requiring intervention met strict WHO criteria for DHF. In contrast, only 1% of OFI cases met WHO criteria for DHF. Plasma leakage and thrombocytopenia were the 2 components contributing to the specificity of the WHO case definition and identified dengue cases that required intervention. Hemorrhagic tendency did not reliably differentiate DF and DHF. In DF cases, thrombocytopenia and bleeding were associated with severity.