Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Gidden, Matthew"
Sort by:
A new scenario logic for the Paris Agreement long-term temperature goal
To understand how global warming can be kept well below 2 degrees Celsius and even 1.5 degrees Celsius, climate policy uses scenarios that describe how society could reduce its greenhouse gas emissions. However, current scenarios have a key weakness: they typically focus on reaching specific climate goals in 2100. This choice may encourage risky pathways that delay action, reach higher-than-acceptable mid-century warming, and rely on net removal of carbon dioxide thereafter to undo their initial shortfall in reductions of emissions. Here we draw on insights from physical science to propose a scenario framework that focuses on capping global warming at a specific maximum level with either temperature stabilization or reversal thereafter. The ambition of climate action until carbon neutrality determines peak warming, and can be followed by a variety of long-term states with different sustainability implications. The approach proposed here closely mirrors the intentions of the United Nations Paris Agreement, and makes questions of intergenerational equity into explicit design choices. Fundamental value judgments about acceptable maximum levels of climate change and future reliance on controversial technologies can be made explicitly in climate scenarios, thereby addressing the intergenerational bias present in the scenario literature.
Overconfidence in climate overshoot
Global emission reduction efforts continue to be insufficient to meet the temperature goal of the Paris Agreement 1 . This makes the systematic exploration of so-called overshoot pathways that temporarily exceed a targeted global warming limit before drawing temperatures back down to safer levels a priority for science and policy 2 – 5 . Here we show that global and regional climate change and associated risks after an overshoot are different from a world that avoids it. We find that achieving declining global temperatures can limit long-term climate risks compared with a mere stabilization of global warming, including for sea-level rise and cryosphere changes. However, the possibility that global warming could be reversed many decades into the future might be of limited relevance for adaptation planning today. Temperature reversal could be undercut by strong Earth-system feedbacks resulting in high near-term and continuous long-term warming 6 , 7 . To hedge and protect against high-risk outcomes, we identify the geophysical need for a preventive carbon dioxide removal capacity of several hundred gigatonnes. Yet, technical, economic and sustainability considerations may limit the realization of carbon dioxide removal deployment at such scales 8 , 9 . Therefore, we cannot be confident that temperature decline after overshoot is achievable within the timescales expected today. Only rapid near-term emission reductions are effective in reducing climate risks. Aiming for declining global temperatures can limit long-term climate risks compared with a mere stabilization of global warming, including sea-level rise and cryosphere changes.
An emission pathway classification reflecting the Paris Agreement climate objectives
The 2015 Paris Agreement sets the objectives of global climate ambition as expressed in its long-term temperature goal and mitigation goal. The scientific community has explored the characteristics of greenhouse gas emission reduction pathways in line with the Paris Agreement. However, when categorizing such pathways, the focus has been put on the temperature outcome and not on emission reduction objectives. Here we propose a pathway classification that aims to comprehensively reflect the climate criteria set out in the Paris Agreement. We show how such an approach allows for a fully consistent interpretation of the Agreement. For Paris Agreement compatible pathways, we report net zero CO 2 and greenhouse gas emissions around 2050 and 2065, respectively. We illustrate how pathway design criteria not rooted in the Paris Agreement, such as the 2100 temperature level, result in scenario outcomes wherein about 6 - 24% higher deployment (interquartile range) of carbon dioxide removal is observed.
Aligning climate scenarios to emissions inventories shifts global benchmarks
Taking stock of global progress towards achieving the Paris Agreement requires consistently measuring aggregate national actions and pledges against modelled mitigation pathways 1 . However, national greenhouse gas inventories (NGHGIs) and scientific assessments of anthropogenic emissions follow different accounting conventions for land-based carbon fluxes resulting in a large difference in the present emission estimates 2 , 3 , a gap that will evolve over time. Using state-of-the-art methodologies 4 and a land carbon-cycle emulator 5 , we align the Intergovernmental Panel on Climate Change (IPCC)-assessed mitigation pathways with the NGHGIs to make a comparison. We find that the key global mitigation benchmarks become harder to achieve when calculated using the NGHGI conventions, requiring both earlier net-zero CO 2 timing and lower cumulative emissions. Furthermore, weakening natural carbon removal processes such as carbon fertilization can mask anthropogenic land-based removal efforts, with the result that land-based carbon fluxes in NGHGIs may ultimately become sources of emissions by 2100. Our results are important for the Global Stocktake 6 , suggesting that nations will need to increase the collective ambition of their climate targets to remain consistent with the global temperature goals. Aligning the IPCC-assessed mitigation pathways with the national greenhouse gas inventories shows that key global mitigation benchmarks become harder to achieve, requiring achieving earlier net-zero and lower cumulative emissions.
Current and future global climate impacts resulting from COVID-19
The global response to the COVID-19 pandemic has led to a sudden reduction of both GHG emissions and air pollutants. Here, using national mobility data, we estimate global emission reductions for ten species during the period February to June 2020. We estimate that global NOx emissions declined by as much as 30% in April, contributing a short-term cooling since the start of the year. This cooling trend is offset by ~20% reduction in global SO2 emissions that weakens the aerosol cooling effect, causing short-term warming. As a result, we estimate that the direct effect of the pandemic-driven response will be negligible, with a cooling of around 0.01 ± 0.005 °C by 2030 compared to a baseline scenario that follows current national policies. In contrast, with an economic recovery tilted towards green stimulus and reductions in fossil fuel investments, it is possible to avoid future warming of 0.3 °C by 2050.Reduced GHG and air pollutant emissions during the COVID-19 lockdowns resulted in declines in NOx emissions of up to 30%, causing short-term cooling, while ~20% SO2 emissions decline countered this for overall minimal temperature effect.
Wave of net zero emission targets opens window to meeting the Paris Agreement
National net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C).Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
Fair-share carbon dioxide removal increases major emitter responsibility
The Paris Agreement long-term temperature goal is to be achieved on the basis of equity. Accomplishing this goal will require carbon dioxide removal (CDR), yet existing plans for CDR deployment are insufficient to meet potential global needs, and equitable approaches for distributing CDR responsibilities between nations are lacking. Here we apply two common burden-sharing principles to show how CDR responsibility could be shared between regions in 1.5 °C and 2 °C mitigation pathways. We find that fair-share outcomes for the United States, the European Union and China could imply 2–3 times larger CDR responsibilities this century compared with a global least-cost approach. We illustrate how delaying near-term mitigation affects the CDR responsibilities of major emitters: raising emission levels in 2030 by one gigatonne generates about 20–70 additional gigatonnes of CDR responsibility over this century. An informed debate about equitable CDR contributions will be essential to achieve much-needed progress in this area.Carbon dioxide removal (CDR) will be required to achieve 1.5 °C or well below 2 °C climate targets. Analysis of equitable distributions of CDR responsibility shows 2–3 times larger responsibility on large emitters such as the United States, China and the European Union than under a least-cost approach.
Institutional decarbonization scenarios evaluated against the Paris Agreement 1.5 °C goal
Scientifically rigorous guidance to policy makers on mitigation options for meeting the Paris Agreement long-term temperature goal requires an evaluation of long-term global-warming implications of greenhouse gas emissions pathways. Here we employ a uniform and transparent methodology to evaluate Paris Agreement compatibility of influential institutional emission scenarios from the grey literature, including those from Shell, BP, and the International Energy Agency. We compare a selection of these scenarios analysed with this methodology to the Integrated Assessment Model scenarios assessed by the Intergovernmental Panel on Climate Change. We harmonize emissions to a consistent base-year and account for all greenhouse gases and aerosol precursor emissions, ensuring a self-consistent comparison of climate variables. An evaluation of peak and end-of-century temperatures is made, with both being relevant to the Paris Agreement goal. Of the scenarios assessed, we find that only the IEA Net Zero 2050 scenario is aligned with the criteria for Paris Agreement consistency employed here. We investigate root causes for misalignment with these criteria based on the underlying energy system transformation. Here the authors present a framework to assess the temperature outcomes of decarbonization scenarios from institutions such as the IEA, BP and Shell. Scenarios are evaluated for consistency with the long-term temperature goal of the Paris Agreement.
Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison
We present an overview of results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33) on the viability of large-scale deployment of bioenergy for achieving long-run climate goals. The study explores future bioenergy use across models under harmonized scenarios for future climate policies, availability of bioenergy technologies, and constraints on biomass supply. This paper provides a more transparent description of IAMs that span a broad range of assumptions regarding model structures, energy sectors, and bioenergy conversion chains. Without emission constraints, we find vastly different CO2 emission and bioenergy deployment patterns across models due to differences in competition with fossil fuels, the possibility to produce large-scale bio-liquids, and the flexibility of energy systems. Imposing increasingly stringent carbon budgets mostly increases bioenergy use. A diverse set of available bioenergy technology portfolios provides flexibility to allocate bioenergy to supply different final energy as well as remove carbon dioxide from the atmosphere by combining bioenergy with carbon capture and sequestration (BECCS). Sector and regional bioenergy allocation varies dramatically across models mainly due to bioenergy technology availability and costs, final energy patterns, and availability of alternative decarbonization options. Although much bioenergy is used in combination with CCS, BECCS is not necessarily the driver of bioenergy use. We find that the flexibility to use biomass feedstocks in different energy sub-sectors makes large-scale bioenergy deployment a robust strategy in mitigation scenarios that is surprisingly insensitive with respect to reduced technology availability. However, the achievability of stringent carbon budgets and associated carbon prices is sensitive. Constraints on biomass feedstock supply increase the carbon price less significantly than excluding BECCS because carbon removals are still realized and valued. Incremental sensitivity tests find that delayed readiness of bioenergy technologies until 2050 is more important than potentially higher investment costs.
The generation of gridded emissions data for CMIP6
Spatially distributed anthropogenic and open burning emissions are fundamental data needed by Earth system models. We describe the methods used for generating gridded datasets produced for use by the modeling community, particularly for the Coupled Model Intercomparison Project Phase 6. The development of three sets of gridded data for historical open burning, historical anthropogenic, and future scenarios was coordinated to produce consistent data over 1750–2100. Historical data up to 2014 were provided with annual resolution and future scenario data in 10-year intervals. Emissions are provided on a sectoral basis, along with additional files for speciated non-methane volatile organic compounds (NMVOCs). An automated framework was developed to produce these datasets to ensure that they are reproducible and facilitate future improvements. We discuss the methodologies used to produce these data along with limitations and potential for future work.