Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Giesel, P F"
Sort by:
Production and purification of molecular 225Ac at CERN-ISOLDE
2025
The radioactive nuclide
225
Ac is one of the few promising candidates for cancer treatment by targeted-
α
-therapy, but worldwide production of
225
Ac faces significant limitations. In this work, the Isotope Separation On-Line method was used to produce actinium by irradiating targets made of uranium carbide and thorium carbide with 1.4-GeV protons. Actinium fluoride molecules were formed, ionized through electron impact, then extracted and mass-separated as a beam of molecular ions. The composition of the mass-selected ion beam was verified using time-of-flight mass spectrometry,
α
- and
γ
-ray decay spectrometry. Extracted quantities of
225
Ac
19
F
2
+
particles per
μ
C of incident protons were
3.9
(
3
)
×
10
7
from a uranium carbide target and
4.3
(
4
)
×
10
7
for a thorium carbide target. Using a magnetic mass separator, the long-lived contamination
227
Ac is suppressed to
<
5.47
×
10
-
7
(95% confidence interval) with respect to
225
Ac by activity. Measured rates scale to collections of 108 kBq
μ
A
-
1
h
-
1
of directly produced
225
Ac
19
F
2
+
.
Journal Article
Production and purification of molecular .sup.225Ac at CERN-ISOLDE
2025
The radioactive nuclide .sup.225Ac is one of the few promising candidates for cancer treatment by targeted- [Formula omitted]-therapy, but worldwide production of .sup.225Ac faces significant limitations. In this work, the Isotope Separation On-Line method was used to produce actinium by irradiating targets made of uranium carbide and thorium carbide with 1.4-GeV protons. Actinium fluoride molecules were formed, ionized through electron impact, then extracted and mass-separated as a beam of molecular ions. The composition of the mass-selected ion beam was verified using time-of-flight mass spectrometry, [Formula omitted]- and [Formula omitted]-ray decay spectrometry. Extracted quantities of [Formula omitted] particles per [Formula omitted]C of incident protons were [Formula omitted] from a uranium carbide target and [Formula omitted] for a thorium carbide target. Using a magnetic mass separator, the long-lived contamination .sup.227 Ac is suppressed to [Formula omitted] (95% confidence interval) with respect to .sup.225Ac by activity. Measured rates scale to collections of 108 kBq [Formula omitted]A [Formula omitted]h [Formula omitted] of directly produced [Formula omitted].
Journal Article
Production and purification of molecular 225 Ac at CERN-ISOLDE
2025
The radioactive nuclide
Ac is one of the few promising candidates for cancer treatment by targeted-
-therapy, but worldwide production of
Ac faces significant limitations. In this work, the Isotope Separation On-Line method was used to produce actinium by irradiating targets made of uranium carbide and thorium carbide with 1.4-GeV protons. Actinium fluoride molecules were formed, ionized through electron impact, then extracted and mass-separated as a beam of molecular ions. The composition of the mass-selected ion beam was verified using time-of-flight mass spectrometry,
- and
-ray decay spectrometry. Extracted quantities of
particles per
C of incident protons were
from a uranium carbide target and
for a thorium carbide target. Using a magnetic mass separator, the long-lived contamination
Ac is suppressed to
(95% confidence interval) with respect to
Ac by activity. Measured rates scale to collections of 108 kBq
A
h
of directly produced
.
Journal Article
Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers
2020
PurposeCancer-associated fibroblasts (CAFs) expressing fibroblast activation protein (FAP) have been associated with the aggressive nature of head and neck cancers (HNCs). These tumours grow diffusely, leading to extremely challenging differentiation between tumour and healthy tissue. This analysis aims to introduce a novel approach of tumour detection, contouring and targeted radiotherapy of HNCs using visualisation of CAFs: PET-CT with 68Ga-radiolabeled inhibitors of FAP (FAPI).MethodsFAPI PET-CT was performed without complications prior to radiotherapy in addition to contrast enhanced CT (CE-CT) and MRI on 14 patients with HNC. First, for tissue biodistribution analysis, volumes of interest were defined to quantify SUVmean and SUVmax in tumour and healthy parenchyma. Secondly, using four thresholds of three-, five-, seven- and tenfold increase of FAPI enhancement in the tumour as compared with normal tissue, four different gross tumour volumes (FAPI-GTV) were created automatically. These were compared with GTVs created conventionally with CE-CT and MRI (CT-GTV).ResultsThe biodistribution analysis revealed high FAPI avidity within tumorous lesions (e.g. primary tumours, SUVmax 14.62 ± 4.44; SUVmean 7.41 ± 2.39). In contrast, low background uptake was measured in healthy tissues of the head and neck region (e.g. salivary glands: SUVmax 1.76 ± 0.31; SUVmean 1.23 ± 0.28). Considering radiation planning, CT-GTV was of 27.3 ml, whereas contouring with FAPI resulted in significantly different GTVs of 67.7 ml (FAPI × 3, p = 0.0134), 22.1 ml (FAPI × 5, p = 0.0419), 7.6 ml (FAPI × 7, p = 0.0001) and 2.3 ml (FAPI × 10, p = 0.0001). Taking these significant disparities between the GTVs into consideration, we merged FAPI-GTVs with CT-GTVs. This resulted in median volumes, that were, as compared to CT-GTVs, significantly larger with FAPI × 3 (54.7 ml, + 200.5% relative increase, p = 0.0005) and FAPI × 5 (15.0 ml, + 54.9%, p = 0.0122). Furthermore, FAPI-GTVs were not covered by CE-CT-based planning target volumes (CT-PTVs) in several cases.ConclusionWe present first evidence of diagnostic and therapeutic potential of FAPI ligands in head and neck cancer. Larger studies with histopathological correlation are required to validate our findings.
Journal Article
Intra-individual comparison of (68)Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer
2016
Multi-parametric magnetic resonance imaging (MP-MRI) is currently the most comprehensive work up for non-invasive primary tumor staging of prostate cancer (PCa). Prostate-specific membrane antigen (PSMA)-Positron emission tomography-computed tomography (PET/CT) is presented to be a highly promising new technique for N- and M-staging in recurrent PCa-patients. The actual investigation analyses the potential of (68)Ga-PSMA11-PET/CT to assess the extent of primary prostate cancer by intra-individual comparison to MP-MRI.
In a retrospective study, ten patients with primary PCa underwent MP-MRI and PSMA-PET/CT for initial staging. All tumors were proven histopathological by biopsy. Image analysis was done in a quantitative (SUVmax) and qualitative (blinded read) fashion based on PI-RADS. The PI-RADS schema was then translated into a 3D-matrix and the euclidian distance of this coordinate system was used to quantify the extend of agreement.
Both MP-MRI and PSMA-PET/CT presented a good allocation of the PCa, which was also in concordance to the tumor location validated in eight-segment resolution by biopsy. An Isocontour of 50 % SUVmax in PSMA-PET resulted in visually concordant tumor extension in comparison to MP-MRI (T2w and DWI). For 89.4 % of sections containing a tumor according to MP-MRI, the tumor was also identified in total or near-total agreement (euclidian distance ≤1) by PSMA-PET. Vice versa for 96.8 % of the sections identified as tumor bearing by PSMA-PET the tumor was also found in total or near-total agreement by MP-MRI.
PSMA-PET/CT and MP-MRI correlated well with regard to tumor allocation in patients with a high pre-test probability for large tumors. Further research will be needed to evaluate its value in challenging situation such as prostatitis or after repeated negative biopsies.
Journal Article
PSMA PET/CT with Glu-urea-Lys-(Ahx)-68Ga(HBED-CC) versus 3D CT volumetric lymph node assessment in recurrent prostate cancer
by
Stefanova, M.
,
Fiedler, H.
,
Afshar-Oromieh, A.
in
Aged
,
Cardiology
,
Edetic Acid - analogs & derivatives
2015
Purpose
PET/CT with the PSMA ligand is a powerful new method for the early detection of nodal metastases in patients with biochemical relapse. The purpose of this retrospective investigation was to evaluate the volume and dimensions of nodes identified by Glu-urea-Lys-(Ahx)-[
68
Ga(HBED-CC)] (
68
Ga-PSMA-11) in the setting of recurrent prostate cancer.
Methods
All PET/CT images were acquired 60 ± 10 min after intravenous injection of
68
Ga-PSMA-11 (mean dose 176 MBq). In 21 patients with recurrent prostate cancer and rising PSA, 49 PSMA-positive lymph nodes were identified. Using semiautomated lymph node segmentation software, node volume and short-axis and long-axis dimensions were measured and compared with the maximum standardized uptake values (SUVmax). Round nodes greater than or equal to 8 mm were considered positive by morphological criteria alone. The percentage of nodes identified by elevated SUVmax but not by conventional morphological criteria was determined.
Results
The mean volume of
68
Ga-PSMA-11-positive nodes was 0.5 ml (range 0.2 – 2.3 ml), and the mean short-axis diameter was 5.8 mm (range 2.4 – 13.3 mm). In 7 patients (33.3 %) with 31 PSMA-positive nodes only 11 (36 %) were morphologically positive based on diameters >8 mm on CT. In the remaining 14 patients (66.7 %), 18 (37 %) of PSMA positive lymph nodes had short-axis diameters <8 mm with a mean short-axis diameter of 5.0 mm (range 2.4 – 7.9 mm). Thus, in this population,
68
Ga-PSMA-11 PET/CT detected nodal recurrence in two-thirds of patients who would have been missed using conventional morphological criteria.
Conclusion
68
Ga-PSMA-11 PET/CT is more sensitive than CT based 3D volumetric lymph node evaluation in determining the node status of patients with recurrent prostate cancer, and is a promising method of restaging prostate cancers in this setting.
Journal Article
Contrast-enhanced cadaver-specific computed tomography in gross anatomy teaching
2018
ObjectivesTo establish contrast-enhanced (CE) cadaver-specific post-mortem computed tomography (PMCT) in first-year gross anatomy teaching and quantitatively evaluate its learning benefit.Methods132 first-year medical students were included in this IRB-approved study and randomly assigned to an intervention group (n=59) provided with continuous access to CE and non-enhanced (NE) cadaver-specific PMCT-scans during the first-semester gross anatomy course, and a control group (n=73) that had only NE cadaver-specific PMCT data available. Four multiple-choice tests were carried out (15 questions each) subsequent to completion of the corresponding anatomy module: Head and neck anatomy, extremities, thorax, and abdomen. Median test results were compared in each module between the groups using the Wilcoxon rank-sum test. Additionally, participants of the intervention group answered a 15-item feedback-questionnaire.ResultsThe intervention group achieved significantly higher test scores in head and neck anatomy (median=12.0, IQR=10.0–13.0) versus the control group (median=10.5, IQR=9.0–12.0) (p<0.01). There were no significant differences in the comparison of other modules. CEPMCT was highly appreciated by undergraduate medical students.ConclusionsThe incorporation of contrast-enhanced cadaver-specific PMCT-scans in gross anatomy teaching was proven to be feasible in the framework of the medical curriculum and significantly improved the students’ learning performance in head and neck anatomy.Key Points• Cadaver-specific contrast-enhanced post-mortem CT (CEPMCT) is feasible in the medical curriculum.• CEPMCT yields significantly improved learning performance in head and neck anatomy (p<0.01).• CEPMCT is highly appreciated by medical students and used in tutor- or self-guided modes.
Journal Article
Simultaneous Computed Tomography-Guided Biopsy and Radiofrequency Ablation of Solitary Pulmonary Malignancy in High-Risk Patients
2012
Background: In recent years experience has been accumulated in percutaneous radiofrequency ablation (RFA) of lung malignancies in nonsurgical patients. Objectives: In this study, we retrospectively evaluated a simultaneous diagnostic and therapeutic approach including CT-guided biopsy followed immediately by RFA of solitary malignant pulmonary lesions. Methods: CT-guided transthoracic core needle biopsy of solitary pulmonary lesions suspicious for malignancy was performed and histology was proven based on immediate frozen sections. RFA probes were placed into the pulmonary tumors under CT guidance and the ablation was performed subsequently. The procedure-related morbidity was analyzed. Follow-up included a CT scan and pulmonary function parameters. Results: A total of 33 CT-guided biopsies and subsequent RFA within a single procedure were performed. Morbidity of CT-guided biopsy included pulmonary hemorrhage (24%) and a mild pneumothorax (12%) without need for further interventions. The RFA procedure was not aggravated by the previous biopsy. The rate of pneumothorax requiring chest tube following RFA was 21%. Local tumor control was achieved in 77% with a median follow-up of 12 months. The morbidity of the CT-guided biopsy had no statistical impact on the local recurrence rate. Conclusions: The simultaneous diagnostic and therapeutic approach including CT-guided biopsy followed immediately by RFA of solitary malignant pulmonary lesions is a safe procedure. The potential of this combined approach is to avoid unnecessary therapies and to perform adequate therapies based on histology. Taking the local control rate into account, this approach should only be performed in those patients who are unable to undergo or who refuse surgery.
Journal Article
Intra-individual comparison of 68Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer
2016
Purpose
Multi-parametric magnetic resonance imaging (MP-MRI) is currently the most comprehensive work up for non-invasive primary tumor staging of prostate cancer (PCa). Prostate-specific membrane antigen (PSMA)-Positron emission tomography–computed tomography (PET/CT) is presented to be a highly promising new technique for N- and M-staging in recurrent PCa-patients. The actual investigation analyses the potential of
68
Ga-PSMA11-PET/CT to assess the extent of primary prostate cancer by intra-individual comparison to MP-MRI.
Methods
In a retrospective study, ten patients with primary PCa underwent MP-MRI and PSMA-PET/CT for initial staging. All tumors were proven histopathological by biopsy. Image analysis was done in a quantitative (SUVmax) and qualitative (blinded read) fashion based on PI-RADS. The PI-RADS schema was then translated into a 3D-matrix and the euclidian distance of this coordinate system was used to quantify the extend of agreement.
Results
Both MP-MRI and PSMA-PET/CT presented a good allocation of the PCa, which was also in concordance to the tumor location validated in eight-segment resolution by biopsy. An Isocontour of 50 % SUVmax in PSMA-PET resulted in visually concordant tumor extension in comparison to MP-MRI (T2w and DWI). For 89.4 % of sections containing a tumor according to MP-MRI, the tumor was also identified in total or near-total agreement (euclidian distance ≤1) by PSMA-PET. Vice versa for 96.8 % of the sections identified as tumor bearing by PSMA-PET the tumor was also found in total or near-total agreement by MP-MRI.
Conclusions
PSMA-PET/CT and MP-MRI correlated well with regard to tumor allocation in patients with a high pre-test probability for large tumors. Further research will be needed to evaluate its value in challenging situation such as prostatitis or after repeated negative biopsies.
Journal Article
Intra-individual comparison of ^sup 68^Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer
by
Holland-letz, T
,
Afshar-oromieh, A
,
Debus, J
in
Comparative studies
,
Medical imaging
,
Nuclear magnetic resonance
2016
Purpose Multi-parametric magnetic resonance imaging (MP-MRI) is currently the most comprehensive work up for non-invasive primary tumor staging of prostate cancer (PCa). Prostate-specific membrane antigen (PSMA)-Positron emission tomography-computed tomography (PET/CT) is presented to be a highly promising new technique for N- and M-staging in recurrent PCa-patients. The actual investigation analyses the potential of 68Ga-PSMA11-PET/CT to assess the extent of primary prostate cancer by intra-individual comparison to MP-MRI. Methods In a retrospective study, ten patients with primary PCa underwent MP-MRI and PSMA-PET/CT for initial staging. All tumors were proven histopathological by biopsy. Image analysis was done in a quantitative (SUVmax) and qualitative (blinded read) fashion based on PI-RADS. The PI-RADS schema was then translated into a 3D-matrix and the euclidian distance of this coordinate system was used to quantify the extend of agreement. Results Both MP-MRI and PSMA-PET/CT presented a good allocation of the PCa, which was also in concordance to the tumor location validated in eight-segment resolution by biopsy. An Isocontour of 50 % SUVmax in PSMA-PET resulted in visually concordant tumor extension in comparison to MP-MRI (T2w and DWI). For 89.4 % of sections containing a tumor according to MP-MRI, the tumor was also identified in total or near-total agreement (euclidian distance [less than or equal to]1) by PSMA-PET. Vice versa for 96.8 % of the sections identified as tumor bearing by PSMA-PET the tumor was also found in total or near-total agreement by MP-MRI. Conclusions PSMA-PET/CT and MP-MRI correlated well with regard to tumor allocation in patients with a high pre-test probability for large tumors. Further research will be needed to evaluate its value in challenging situation such as prostatitis or after repeated negative biopsies.
Journal Article