Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Gil-Hutton, R."
Sort by:
A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation
Pluto's twin is out in the cold Four trans-Neptunian objects are currently recognized as dwarf planets: Eris, Haumea, Makemake and Pluto. Of these, the 'demoted' planet Pluto has been studied for many years and has a detected atmosphere. The others are difficult to observe because of their extreme distance from the Sun, but a stellar occultation event on 6 November 2010 provided an opportunity for a closer look at Eris. The data obtained reveal Eris as a 'twin' for Pluto in terms of size, and previous work showed the two to have similar surface compositions. Eris, however, has no detectable atmosphere and its surface is bright, possibly a result of atmospheric collapse in an extremely cold environment. The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto 1 . It resides at present at 95.7 astronomical units (1  au is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 ut . The event is consistent with a spherical shape for Eris, with radius 1,163 ± 6 kilometres, density 2.52 ± 0.05 grams per cm 3 and a high visible geometric albedo, . No nitrogen, argon or methane atmospheres are detected with surface pressure larger than ∼1 nanobar, about 10,000 times more tenuous than Pluto's present atmosphere 2 , 3 , 4 , 5 . As Pluto's radius is estimated 3 , 4 , 5 , 6 , 7 , 8 to be between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin, with a bright surface possibly caused by a collapsed atmosphere, owing to its cold environment. We anticipate that this atmosphere may periodically sublimate as Eris approaches its perihelion, at 37.8 astronomical units from the Sun.
A ring system detected around the Centaur (10199) Chariklo
Observations of a stellar occultation by (10199) Chariklo, a minor body that orbits the Sun between Jupiter and Neptune, reveal that it has a ring system, a property previously observed only for the four giant planets of the Solar System. Tiny Chariklo has its own ring system Observations of a stellar occultation by (10199) Chariklo, a Centaur-class outer-system asteroid orbiting between Saturn and Uranus, reveal that it has a ring system, a feature previously observed only for the four giant planets. Chariklo, with a diameter of about 250 km, has two narrow and dense rings separated by a small gap, probably due to the presence of a (yet-to-be-found) kilometre-sized satellite. The discovery of these rings raises questions about the formation and dynamical evolution of planetary rings. For one thing, it seems likely that planetary rings are much more common than previously thought. Hitherto, rings have been found exclusively around the four giant planets in the Solar System 1 . Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur—that is, one of a class of small objects orbiting primarily between Jupiter and Neptune—with an equivalent radius of 124   9 kilometres (ref. 2 ). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming 3 of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period 4 , 5 . This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.
Galactic perturbations on the population of wide binary stars with exoplanets
Aims. The aim of this work is to study the dynamical effects of the Galaxy on binary star systems with physical and orbital charac- teristics similar to those of the population of known wide binary stars with exoplanets. As secondary goal we analyse the possible consequences on the stability of a hypothetical planetary system orbiting one of the stellar components. Methods. We numerically reproduced the temporal evolution of a sample of 3 * 10 5 binary star systems disturbed by the Galactic potential and passing stars in an environment similar to the solar neighbourhood. Results. Our results show that the dynamical evolution of the population of wide binary stars with exoplanets in the solar neigh- bourhood is modelled by the process of disruption of binary star systems induced by the Galaxy. We found that this process depends mainly on the separation between both stars, whereas it is almost independent of the initial orbital configuration. Moreover, our calcu- lations are in agreement with the results of previous works regarding the indirect influence of the Galaxy on the stability of planetary systems in wide binary stars. However, the effects on the planetary region show a dependence on the initial configuration of binary stars. Finally, we obtain an indirect test of the impulse approximation model for dynamical studies of binary star systems.
A new insight into the Galactic potential: A simple secular model for the evolution of binary systems in the solar neighbourhood
Context. Among the main effects that the Milky Way exerts in binary systems, the Galactic tide is the only one that is not probabilistic and can be deduced from a potential. Therefore, it is possible to perform an analysis of the global structure of the phase space of binary systems in the solar neighbourhood using the Galactic potential. Aims. The aim of this work is to obtain a simple model to study the collisionless dynamical evolution of generic wide binaries systems in the solar neighbourhood. Methods. Through an averaging process, we reduced the three-dimensional potential of the Galaxy to a secular one-degree of freedom model. The accuracy of this model was tested by comparing its predictions with numerical simulations of the exact equations of motion of a two-body problem disturbed by the Galaxy. Results. Using the one-degree of freedom model, we developed a detailed dynamical study, finding that the secular Galactic tide period changes as a function of the separation of the pair, which also gives a dynamical explanation for the arbitrary classification between \"wide\" and \"tight\" binaries. Moreover, the secular phase space for a generic gravitationally bound pair is similar to the dynamical structure of a Lidov-Kozai resonance, but surprisingly this structure is independent of the masses and semimajor axis of the binary system. Thus, the Galactic potential is able to excite the initially circular orbit of binary systems to high values of eccentricity, which has important implications for studies of binary star systems (with and without exoplanets), comets, and Oort cloud objects.
Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation
The icy dwarf planet Makemake has projected axes of 1,430 ± 9 and 1,502 ± 45 km and a V-band geometric albedo larger than Pluto’s but smaller than Eris’s, with no global Pluto-like atmosphere. Makemake shapes up against Pluto and Eris Makemake is thought to be the third-largest dwarf planet in our Solar System, a little smaller than Pluto and Eris, but until now knowledge of its size and albedo were only approximate. This paper reports the results of observations of the occultation of a faint star known as NOMAD 1181-0235723 by Makemake on 23 April 2011. The data confirm that Makemake is smaller than Pluto and Eris, with axes of 1,430±9 km and 1,502±45 km. Makemake's mean geometric albedo — the ratio of light reflected to light received — is intermediate between that of Pluto and that of Eris. All three are icy, making them among the most reflective objects in the Solar System. And the occultation light curves rule out the presence of a global Pluto-like atmosphere on Makemake, although the presence of dark terrain might imply the presence of a localized atmosphere. Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies 1 , 2 . Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos 3 . Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto 4 , and is currently at a distance to the Sun intermediate between the two. Although Makemake’s size (1,420 ± 60 km) and albedo are roughly known 5 , 6 , there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere 4 , 7 , 8 . Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1 σ ) and 1,502 ± 45 km, implying a V-band geometric albedo p V = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4–12 nanobar (1 σ ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm −3 is inferred from the data.
The population of Comet candidates among quasi-Hilda objects revisited and updated
In this paper, we perform a dynamical study of the population of objects in the unstable quasi-Hilda region. The aim of this work is to make an update of the population of quasi-Hilda comets (QHCs) that have recently arrived from the Centaurs region. To achieve our goal, we have applied a dynamical criteria to constrain the unstable quasi-Hilda region that allowed us to select 828 potential candidates. The orbital data of the potential candidates was take from the ASTORB database and we apply backward integration to search by those that have recently arrived from the outer regions of the Solar System. Then we studied the dynamical evolution of the candidates from a statistical point of view by calculating the time-averaged distribution of a number of clones of each candidate as a function of aphelion and perihelion distances. We found that 47 objects could have been recently injected into the inner Solar System from the Centaur or transneptunian regions. These objects may have preserved volatile material and are candidates to exhibit cometary activity.
Polarimetry of M-type asteroids in the context of their surface composition
Aims. We aim to investigate how polarimetric observations can improve our understanding of the nature and diversity of M/X-type asteroids. Methods. Polarimetric observations of the selected M/X-type asteroids were carried out at the Tohoku 0.6-m telescope at Haleakala Observatory, Hawaii (simultaneously in BVR filters), the 2-m telescope of the Bulgarian National Astronomical Observatory in Rozhen (in R filter), and the 2.15-m telescope of the Complejo Astronómico El Leoncito (CASLEO), Argentina (in V filter). We analysed the polarimetric characteristics of M/X-type asteroids along with the available data obtained by other techniques. Results. New polarimetric observations of 22 M/X-type asteroids combined with published observations provide a data set of 41 asteroids for which the depth of a negative polarisation branch and/or inversion angle were determined. We found that the depth of the negative polarisation branch tends to increase with decreasing steepness of the near-infrared spectra. Asteroids with a deeper negative polarisation branch tend to have a higher radar circular polarisation ratio. We show that, based on the relationship of the depth of the negative polarisation branch and inversion angle, two main sub-types can be distinguished among M-type asteroids. We suggest that these groups may be related to different surface compositions similar to (1) irons and stony-irons and (2) enstatite and iron-rich carbonaceous chondrites.
The trans-Neptunian object (84922) 2003 VS2 through stellar occultations
We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the Plutino object (84922) 2003~VS\\(_2\\). From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on November 7th, 2014, we obtained the parameters of the best-fitting ellipse to the limb of the body at the time of occultation. We also obtained short-term photometry data for the body in order to derive its rotational phase during the occultation. The rotational light curve present a peak-to-peak amplitude of 0.141 \\(\\pm\\) 0.009 mag. This allows us to reconstruct the three-dimensional shape of the body, with principal semi-axes \\(a = 313.8 \\pm 7.1\\) km, \\(b = 265.5^{+8.8}_{-9.8}\\) km, and \\(c = 247.3^{+26.6}_{-43.6}\\) km, which is not consistent with a Jacobi triaxial equilibrium figure. The derived spherical volume equivalent diameter of \\(548.3 ^{+29.5}_{-44.6}\\) km is about 5\\% larger than the radiometric diameter of 2003~VS\\(_2\\) derived from Herschel data of \\(523 \\pm 35\\) km, but still compatible with it within error bars. From those results we can also derive the geometric albedo (\\(0.123 ^{+0.015}_{-0.014}\\)) and, under the assumption that the object is a Maclaurin spheroid, the density \\(\\rho = 1400^{+1000}_{-300}\\) for the plutino. The disappearances and reappearances of the star during the occultations do not show any compelling evidence for a global atmosphere considering a pressure upper limit of about 1 microbar for a pure nitrogen atmosphere, nor secondary features (e.g. rings or satellite) around the main body.
Origin and Sustainability of The Population of Asteroids Captured in the Exterior Resonance 1:2 with Mars
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a = 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.