Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
189
result(s) for
"Gilbert, Marius"
Sort by:
Global trends in antimicrobial use in aquaculture
by
Laxminarayan, Ramanan
,
Gilbert, Marius
,
Schar, Daniel
in
631/326/22/1434
,
704/172/4081
,
Animal nutrition
2020
Globally aquaculture contributes 8% of animal protein intake to the human diet, and per capita consumption is increasing faster than meat and dairy consumption. Reports have documented antimicrobial use in the rapidly expanding aquaculture industry, which may contribute to the rise of antimicrobial resistance, carrying potential consequences for animal-, human-, and ecosystem-health. However, quantitative antimicrobial use across a highly diversified aquaculture industry is not well characterized. Here, we estimate global trends in antimicrobial use in aquaculture in 2017 and 2030 to help target future surveillance efforts and antimicrobial stewardship policies. We estimate antimicrobial use intensity (mg kg
−1
) for six species groups though a systematic review of point prevalence surveys, which identified 146 species-specific antimicrobial use rates. We project antimicrobial use in each country by combining mean antimicrobial use coefficients per species group with OECD/FAO Agricultural Outlook and FAO FishStat production volumes. We estimate global antimicrobial consumption in 2017 at 10,259 tons (95% uncertainty interval [UI] 3163–44,727 tons), increasing 33% to 13,600 tons in 2030 (UI 4193–59,295). The Asia–Pacific region represents the largest share (93.8%) of global consumption, with China alone contributing 57.9% of global consumption in 2017. Antimicrobial consumption intensity per species group was: catfish, 157 mg kg
−1
(UI 9–2751); trout, 103 mg kg
−1
(UI 5–1951); tilapia, 59 mg kg
−1
(UI 21–169); shrimp, 46 mg kg
−1
(UI 10–224); salmon, 27 mg kg
−1
(UI 17–41) and a pooled species group, 208 mg kg
−1
, (UI 70–622). All antimicrobial classes identified in the review are classified as medically important. We estimate aggregate global human, terrestrial and aquatic food animal antimicrobial use in 2030 at 236,757 tons (95% UI 145,525–421,426), of which aquaculture constitutes 5.7% but carries the highest use intensity per kilogram of biomass (164.8 mg kg
−1
). This analysis calls for a substantial scale-up of surveillance capacities to monitor global trends in antimicrobial use. Current evidence, while subject to considerable uncertainties, suggests that for some species groups antimicrobial use intensity surpasses consumption levels in terrestrial animals and humans. Acknowledging the fast-growing nature of aquaculture as an important source of animal nutrition globally, our findings highlight the urgent need for enhanced antimicrobial stewardship in a high-growth industry with broad links to water and ecosystem health.
Journal Article
Global trends in antimicrobial resistance in animals in low- and middle-income countries
by
Silvester, Reshma
,
Bonhoeffer, Sebastian
,
Zhao, Cheng
in
Agricultural Occupations
,
Agricultural practices
,
Animal health
2019
Most antibiotic use is for livestock, and it is growing with the increase in global demand for meat. It is unclear what the increase in demand for antibiotics means for the occurrence of drug resistance in animals and risk to humans. Van Boeckel et al. describe the global burden of antimicrobial resistance in animals on the basis of systematic reviews over the past 20 years (see the Perspective by Moore). There is a clear increase in the number of resistant bacterial strains occurring in chickens and pigs. The current study provides a much-needed baseline model for low- and middle-income countries and provides a “one health” perspective to which future data can be added. Science , this issue p. eaaw1944 ; see also p. 1251 Growing demand for meat in developing economies increases antibiotic consumption and fuels the risk of antibiotic resistance. The global scale-up in demand for animal protein is the most notable dietary trend of our time. Antimicrobial consumption in animals is threefold that of humans and has enabled large-scale animal protein production. The consequences for the development of antimicrobial resistance in animals have received comparatively less attention than in humans. We analyzed 901 point prevalence surveys of pathogens in developing countries to map resistance in animals. China and India represented the largest hotspots of resistance, with new hotspots emerging in Brazil and Kenya. From 2000 to 2018, the proportion of antimicrobials showing resistance above 50% increased from 0.15 to 0.41 in chickens and from 0.13 to 0.34 in pigs. Escalating resistance in animals is anticipated to have important consequences for animal health and, eventually, for human health.
Journal Article
Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia
by
Larsson, D. G. Joakim
,
Zhao, Cheng
,
Wang, Yu
in
631/158/2446/1491
,
631/158/2446/2447
,
631/326/1762
2021
Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals—the fastest growing food animal sector globally—AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000–2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia’s major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.
Trends in antimicrobial resistance (AMR) in aquatic food animals are seldom documented, particularly in Asia. Here, Schar et al. review 749 point prevalence surveys, describing AMR trends in Asian aquaculture and fisheries over two decades, and identifying resistance hotspots as well as regions that would benefit most from future surveillance efforts.
Journal Article
Reducing antimicrobial use in food animals
by
Bonhoeffer, Sebastian
,
Gilbert, Marius
,
Grenfell, Bryan T
in
Animal Feed - standards
,
Animal production
,
Animal protein
2017
Consider user fees and regulatory caps on veterinary use The large and expanding use of antimicrobials in livestock, a consequence of growing global demand for animal protein, is of considerable concern in light of the threat of antimicrobial resistance (AMR). Use of antimicrobials in animals has been linked to drug-resistant infections in animals ( 1 ) and humans ( 2 ). In September 2016, the United Nations (UN) General Assembly recognized the inappropriate use of antimicrobials in animals as a leading cause of rising AMR. In September 2018, the interagency group established by the UN Secretary General will report on progress in the global response to AMR, including antimicrobial consumption in animals. We provide a baseline to monitor efforts to reduce antimicrobial use and assess how three global policies might curb antimicrobial consumption in food animal production: (i) enforcing global regulations to cap antimicrobial use, (ii) adherence to nutritional guidelines leading to reduced meat consumption, and (iii) imposing a global user fee on veterinary antimicrobial use.
Journal Article
Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030
by
Huber, Laura
,
Gilbert, Marius
,
Tiseo, Katie
in
Agricultural production
,
Animal populations
,
Animal production
2020
Demand for animal protein is rising globally and has been facilitated by the expansion of intensive farming. However, intensive animal production relies on the regular use of antimicrobials to maintain health and productivity on farms. The routine use of antimicrobials fuels the development of antimicrobial resistance, a growing threat for the health of humans and animals. Monitoring global trends in antimicrobial use is essential to track progress associated with antimicrobial stewardship efforts across regions. We collected antimicrobial sales data for chicken, cattle, and pig systems in 41 countries in 2017 and projected global antimicrobial consumption from 2017 to 2030. We used multivariate regression models and estimated global antimicrobial sales in 2017 at 93,309 tonnes (95% CI: 64,443, 149,886). Globally, sales are expected to rise by 11.5% in 2030 to 104,079 tonnes (95% CI: 69,062, 172,711). All continents are expected to increase their antimicrobial use. Our results show lower global antimicrobial sales in 2030 compared to previous estimates, owing to recent reports of decrease in antimicrobial use, in particular in China, the world’s largest consumer. Countries exporting a large proportion of their production are more likely to report their antimicrobial sales data than countries with small export markets.
Journal Article
Global trends in antimicrobial use in food animals
by
Gilbert, Marius
,
Laxminarayan, Ramanan
,
Grenfell, Bryan T.
in
Agricultural production
,
Algorithms
,
Animal production
2015
Demand for animal protein for human consumption is rising globally at an unprecedented rate. Modern animal production practices are associated with regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Despite the significant potential consequences for antimicrobial resistance, there has been no quantitative measurement of global antimicrobial consumption by livestock. We address this gap by using Bayesian statistical models combining maps of livestock densities, economic projections of demand for meat products, and current estimates of antimicrobial consumption in high-income countries to map antimicrobial use in food animals for 2010 and 2030. We estimate that the global average annual consumption of antimicrobials per kilogram of animal produced was 45 mg⋅kg ⁻¹, 148 mg⋅kg ⁻¹, and 172 mg⋅kg ⁻¹ for cattle, chicken, and pigs, respectively. Starting from this baseline, we estimate that between 2010 and 2030, the global consumption of antimicrobials will increase by 67%, from 63,151 ± 1,560 tons to 105,596 ± 3,605 tons. Up to a third of the increase in consumption in livestock between 2010 and 2030 is imputable to shifting production practices in middle-income countries where extensive farming systems will be replaced by large-scale intensive farming operations that routinely use antimicrobials in subtherapeutic doses. For Brazil, Russia, India, China, and South Africa, the increase in antimicrobial consumption will be 99%, up to seven times the projected population growth in this group of countries. Better understanding of the consequences of the uninhibited growth in veterinary antimicrobial consumption is needed to assess its potential effects on animal and human health.
Significance Antimicrobials are used in livestock production to maintain health and productivity. These practices contribute to the spread of drug-resistant pathogens in both livestock and humans, posing a significant public health threat. We present the first global map (228 countries) of antibiotic consumption in livestock and conservatively estimate the total consumption in 2010 at 63,151 tons. We project that antimicrobial consumption will rise by 67% by 2030, and nearly double in Brazil, Russia, India, China, and South Africa. This rise is likely to be driven by the growth in consumer demand for livestock products in middle-income countries and a shift to large-scale farms where antimicrobials are used routinely. Our findings call for initiatives to preserve antibiotic effectiveness while simultaneously ensuring food security in low- and lower-middle-income countries.
Journal Article
Dynamic population mapping using mobile phone data
2014
During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.
Journal Article
Prestressed and prepolarized piezoelectric material with an elliptical hole
by
Ghita, Gilbert-Marius-Daniel
,
Craciun, Eduard-Marius
,
Rapeanu, Eleonora
in
Boundary conditions
,
Composite materials
,
Conformal mapping
2025
In this paper, the antiplane state problem of an elliptic hole in a prestressed and prepolarized piezoelectric material loaded by constant, uniform remote shear stresses was performed. A compact and elementary form solution of the problem is obtained utilizing the conformal mapping technique and representation of the incremental stress and electrical fields by complex potentials. Using the boundary conditions, the coefficients of complex potentials developed as Laurent series, for the case of a piezoelectric material of class$$\\bar{4}2m$$4 ¯ 2 m , and implicitly the components of incremental stress and electric displacement fields are obtained in a final compact and closed form.
Journal Article
Preparing for a responsible lockdown exit strategy
2020
In just a few weeks’ time, leaders across the globe will have to start making decisions about lifting lockdown policies, with considerable social, economic and political consequences. We propose a framework for what is arguably the most difficult health challenge that governments have faced since the beginning of this century: a responsible lockdown exit strategy.
Journal Article
Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa
2021
By 2050, half of the net increase in the world’s population is expected to reside in sub-Saharan Africa (SSA), driving high urbanization rates and drastic land cover changes. However, the data-scarce environment of SSA limits our understanding of the urban dynamics in the region. In this context, Earth Observation (EO) is an opportunity to gather accurate and up-to-date spatial information on urban extents. During the last decade, the adoption of open-access policies by major EO programs (CBERS, Landsat, Sentinel) has allowed the production of several global high resolution (10–30 m) maps of human settlements. However, mapping accuracies in SSA are usually lower, limited by the lack of reference datasets to support the training and the validation of the classification models. Here we propose a mapping approach based on multi-sensor satellite imagery (Landsat, Sentinel-1, Envisat, ERS) and volunteered geographic information (OpenStreetMap) to solve the challenges of urban remote sensing in SSA. The proposed mapping approach is assessed in 17 case studies for an average F1-score of 0.93, and applied in 45 urban areas of SSA to produce a dataset of urban expansion from 1995 to 2015. Across the case studies, built-up areas averaged a compound annual growth rate of 5.5% between 1995 and 2015. The comparison with local population dynamics reveals the heterogeneity of urban dynamics in SSA. Overall, population densities in built-up areas are decreasing. However, the impact of population growth on urban expansion differs depending on the size of the urban area and its income class.
Journal Article