Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Gilge, S."
Sort by:
Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes
Changes in baseline (here understood as representative of continental to hemispheric scales) tropospheric O3 concentrations that have occurred at northern mid-latitudes over the past six decades are quantified from available measurement records with the goal of providing benchmarks to which retrospective model calculations of the global O3 distribution can be compared. Eleven data sets (ten ground-based and one airborne) including six European (beginning in the 1950's and before), three North American (beginning in 1984) and two Asian (beginning in 1991) are analyzed. When the full time periods of the data records are considered a consistent picture emerges; O3 has increased at all sites in all seasons at approximately 1% yr−1 relative to the site's 2000 yr mixing ratio in each season. For perspective, this rate of increase sustained from 1950 to 2000 corresponds to an approximate doubling. There is little if any evidence for statistically significant differences in average rates of increase among the sites, regardless of varying length of data records. At most sites (most definitively at the European sites) the rate of increase has slowed over the last decade (possibly longer), to the extent that at present O3 is decreasing at some sites in some seasons, particularly in summer. The average rate of increase before 2000 shows significant seasonal differences (1.08 ± 0.09, 0.89 ± 0.10, 0.85 ± 0.11 and 1.21 ± 0.12% yr−1 in spring, summer, autumn and winter, respectively, over North America and Europe).
The Eyjafjallajökull eruption in April 2010 - detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles
Volcanic emissions from the Eyjafjallajökull volcano eruption on the Southern fringe of Iceland in April 2010 were detected at the Global Atmosphere Watch (GAW) station Zugspitze/Hohenpeissenberg (Germany) by means of in-situ measurements, ozone sondes and ceilometers. Information from the German Meteorological Service (DWD) ceilometer network (Flentje et al., 2010) aided identifying the air mass origin. We discuss ground level in-situ measurements of sulphur dioxide (SO2 ), sulphuric acid (H2 SO4 ) and particulate matter as well as ozone sonde profiles and column measurements of SO2 by a Brewer spectrometer. At Hohenpeissenberg, a number of reactive gases, e.g. carbon monoxide and nitrogen oxides, and particle properties, e.g. size distribution and ionic composition, were additionally measured during this period. Our results describe the arrival of the volcanic plume at Zugspitze and Hohenpeissenberg during 16 and 17 April 2010 and its residence in the planetary boundary layer (PBL) for several days thereafter. The ash plume was first seen in the ceilometer backscatter profiles at Hohenpeissenberg in about 6-7 km altitude. After entrainment into the PBL at noon of 17 April, largely enhanced values of sulphur dioxide, sulphuric acid and super-micron-particle number concentration were recorded at Zugspitze/Hohenpeissenberg till 21 April.
Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe
Long-term, ground based in-situ observations of ozone (O3) and its precursor gases nitrogen dioxide (NO2) and carbon monoxide (CO) from the four sites Hohenpeissenberg and Zugspitze (D), Sonnblick (A) and Jungfraujoch (CH) are presented for the period 1995–2007. These Central European alpine mountain observatories cover an altitude range of roughly 1000 to 3500 m. Comparable analytical methods and common quality assurance (QA) procedures are used at all sites. For O3 and CO, calibration is linked to primary calibrations (O3) or CO standards provided by the Central Calibration Laboratory (CCL) at NOAA/ESRL. All stations have been audited by the World Calibration Centre (WCC) for CO and O3 (WCC-Empa; CH). Data from long-term measurements of NO2 and CO are only available from Hohenpeissenberg and Jungfraujoch. Both sites show slightly decreasing mixing ratios of the primarily emitted NO2 and the partly anthropogenically emitted CO between 1995 and 2007. The findings are generally consistent with shorter observation periods at Zugspitze and Sonnblick and thus are considered to represent regional changes in Central European atmospheric composition at this altitude range. Over the same period, 1995–2007, the O3 mixing ratios have slightly increased at three of the four sites independent of wind sector. Trends are often more pronounced in winter and less in summer; highest declines of NO2 and CO are observed in winter and the lowest in summer, whereas the strongest O3 increase was detected in winter and lowest or even decline in summer, respectively. Weekly cycles demonstrate anthropogenic impact at all elevations with enhanced NO2 on working days compared to weekends. Enhanced O3 values on working days indicating photochemical production from anthropogenic precursors are only observed in summer, whereas in all other seasons anti-correlation with NO2 was found due to reduced O3 values on working days. Trends are discussed with respect to anthropogenic impacts and vertical mixing. The observed trends for NO2 at the alpine mountain sites are less pronounced than trends estimated based on emission inventories.
Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques
The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer – HR-ToF-AMS and soot particle aerosol mass spectrometer – SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in residual layers but still originating in northern Italy, while a substantial fraction (41%) was due to the most aged aerosols imported from transalpine areas. The different meteorological regimes also affected the BC mixing state: in periods of enhanced stagnation and recirculation of pollutants, the number fraction of the BC-containing particles determined by ATOFMS was 75% of the total, while in the days of enhanced ventilation of the planetary boundary layer (PBL), such fraction was significantly lower (50%) because of the relative greater influence of non-BC-containing aerosol local sources in the Po Valley. Overall, a full internal mixing between BC and the non-refractory aerosol chemical components was not observed during the experiment in this environment.
Analysis of elevated springtime levels of Peroxyacetyl nitrate (PAN) at the high Alpine research sites Jungfraujoch and Zugspitze
The largest atmospheric peroxyacetyl nitrate (PAN) mole fractions at remote surface sites in the Northern Hemisphere are commonly observed during the months April and May. Different formation mechanisms for this seasonal maximum have previously been suggested: hemispheric-scale production from precursors accumulated during the winter months, increased springtime transport from up-wind continents or increased regional-scale production in the atmospheric boundary layer from recent emissions. The two high Alpine research sites Jungfraujoch (Switzerland) and Zugspitze (Germany) exhibit a distinct and consistent springtime PAN maximum. Since these sites intermittently sample air masses of free-tropospheric and boundary layer origin, they are ideally suited to identify the above-mentioned PAN formation processes and attribute local observations to these. Here we present a detailed analysis of PAN observations and meteorological conditions during May 2008 when PAN levels were especially elevated at both sites. The highest PAN concentrations were connected with anticyclonic conditions, which persisted in May 2008 for about 10 days with north-easterly advection towards the sites. A backward dispersion model analysis showed that elevated PAN concentrations were caused by the combination of favourable photochemical production conditions and large precursor concentrations in the European atmospheric boundary layer. The results suggest that the largest PAN values in spring 2008 at both sites were attributable to regional-scale photochemical production of PAN in the (relatively cold) planetary boundary layer from European precursors, whereas the contribution of inter-continental transport or free-tropospheric build-up was of smaller importance for these sites.
Evaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere
The Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu/), which became fully operational during 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5-day forecasts of atmospheric composition fields. It is the only assimilation system worldwide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases covering the period between 2009 and 2012. A validation was performed based on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) surface observations from the Global Atmosphere Watch (GAW) network, the O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and, furthermore, NO2 tropospheric columns, as well as CO total columns, derived from satellite sensors. The MACC system proved capable of reproducing reactive gas concentrations with consistent quality; however, with a seasonally dependent bias compared to surface and satellite observations – for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between −30 and 30 % at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterisation. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at their highest level, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range from values between −110 and 40 % for NO2 and at most −20 % for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterisation and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.
Measurement and simulation of the 16/17 April 2010 Eyjafjallajökull volcanic ash layer dispersion in the northern Alpine region
The spatial structure and the progression speed of the first ash layer from the Icelandic Eyjafjallajökull volcano which reached Germany on 16/17 April is investigated from remote sensing data and numerical simulations. The ceilometer network of the German Meteorological Service was able to follow the progression of the ash layer over the whole of Germany. This first ash layer turned out to be a rather shallow layer of only several hundreds of metres thickness which was oriented slantwise in the middle troposphere and which was brought downward by large-scale sinking motion over Southern Germany and the Alps. Special Raman lidar measurements, trajectory analyses and in-situ observations from mountain observatories helped to confirm the volcanic origin of the detected aerosol layer. Ultralight aircraft measurements permitted the detection of the arrival of a second major flush of volcanic material in Southern Germany. Numerical simulations with the Eulerian meso-scale model MCCM were able to reproduce the temporal and spatial structure of the ash layer. Comparisons of the model results with the ceilometer network data on 17 April and with the ultralight aircraft data on 19 April were satisfying. This is the first example of a model validation study from this ceilometer network data.
Influences of the 2010 Eyjafjallajökull volcanic plume on air quality in the northern Alpine region
A series of major eruptions of the Eyjafjallajökull volcano in Iceland started on 14 April 2010 and continued until the end of May 2010. The volcanic emissions moved over nearly the whole of Europe and were observed first on 16 April 2010 in Southern Germany with different remote sensing systems from the ground and space. Enhanced PM10 and SO2 concentrations were detected on 17 April at mountain stations (Zugspitze/Schneefernerhaus and Schauinsland) as well as in Innsbruck by in situ measurement devices. On 19 April intensive vertical mixing and advection along with clear-sky conditions facilitated the entrainment of volcanic material down to the ground. The subsequent formation of a stably stratified lower atmosphere with limited mixing near the ground during the evening of 19 April led to an additional enhancement of near-surface particle concentrations. Consequently, on 19 April and 20 April exceedances of the daily threshold value for particulate matter (PM10) were reported at nearly all monitoring stations of the North Alpine foothills as well as at mountain and valley stations in the northern Alps. The chemical analyses of ambient PM10 at monitoring stations of the North Alpine foothills yielded elevated Titanium concentrations on 19/20 April which prove the presence of volcanic plume material. Following this result the PM10 threshold exceedances are also associated with the volcanic plume. The entrainment of the volcanic plume material mainly affected the concentrations of coarse particles (>1 μm) – interpreted as volcanic ash – and ultrafine particles (<100 nm), while the concentrations of accumulation mode aerosol (0.1–1 μm) were not changed significantly. With regard to the occurrence of ultrafine particles, it is concluded that their formation was triggered by high sulphuric acid concentrations which are necessarily generated by the photochemical processes in a plume rich in sulphur dioxide under high solar irradiance. It became evident that during the course of several days, the Eyjafjallajökull volcanic emissions influenced the near-surface atmosphere and thus the ambient air quality. Although the volcanic plume contributed to the overall exposure of the population of the northern Alpine region on two days, only minor effects on the exacerbation of respiratory and cardiovascular symptoms can be expected.
Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe
Hydrogen peroxide (H2O2) plays a significant role in the oxidizing capacity of the atmosphere. It is an efficient oxidant in the liquid phase and serves as a temporary reservoir for the hydroxyl radical (OH), the most important oxidizing agent in the gas phase. Due to its high solubility, removal of H2O2 due to wet and dry deposition is efficient, being a sink of HOx (OH+HO2) radicals. In the continental boundary layer, the H2O2 budget is controlled by photochemistry, transport and deposition processes. Here we use in situ observations of H2O2 and account for chemical source and removal mechanisms to study the interplay between these processes. The data were obtained during five ground-based field campaigns across Europe from 2008 to 2014 and bring together observations in a boreal forest, two mountainous sites in Germany, and coastal sites in Spain and Cyprus. Most campaigns took place in the summer, while the measurements in the south-west of Spain took place in early winter. Diel variations in H2O2 are strongly site-dependent and indicate a significant altitude dependence. While boundary-layer mixing ratios of H2O2 at low-level sites show classical diel cycles with the lowest values in the early morning and maxima around local noon, diel profiles are reversed on mountainous sites due to transport from the nocturnal residual layer and the free troposphere. The concentration of hydrogen peroxide is largely governed by its main precursor, the hydroperoxy radical (HO2), and shows significant anti-correlation with nitrogen oxides (NOx) that remove HO2. A budget calculation indicates that in all campaigns, the noontime photochemical production rate through the self-reaction of HO2 radicals was much larger than photochemical loss due to reaction with OH and photolysis, and that dry deposition is the dominant loss mechanism. Estimated dry deposition velocities varied between approximately 1 and 6 cm s−1, with relatively high values observed during the day in forested regions, indicating enhanced uptake of H2O2 by vegetation. In order to reproduce the change in H2O2 mixing ratios between sunrise and midday, a variable contribution from transport (10 %–100 %) is required to balance net photochemical production and deposition loss. Transport is most likely related to entrainment from the residual layer above the nocturnal boundary layer during the growth of the boundary layer in the morning.
A novel semi-direct method to measure OH reactivity by chemical ionization mass spectrometry (CIMS)
An operational chemical ionization mass spectrometer (CIMS) for hydroxyl radical (OH) and sulfuric acid (H2SO4) concentration measurements was adapted to include observations of OH reactivity, which is the inverse of OH lifetime, for long-term monitoring at the Global Atmosphere Watch (GAW) site Hohenpeissenberg (MOHp), Germany. OH measurement using CIMS is achieved by reacting OH with SO2, leading to the production of H2SO4, which is then detected. The adaptation for OH reactivity consists of the implementation of a second SO2 injection, at a fixed point further down flow in the sample tube to detect the OH decay caused by reactions with OH reactants present in the sample. The method can measure OH reactivity from less than 1 to 40 s−1 with the upper limit due to the fixed positioning of the second SO2 injection. To determine OH reactivity from OH concentration measurements, the reaction time between the two titration zones and OH wall losses in the sample tube need to be determined accurately through OH reactivity calibration. Potential measurement artefacts as a result of HOx recycling in the presence of NO have to be considered. Therefore, NO contamination from gases used in instrument operation must be minimized and ambient NO must be measured concurrently to determine the measurement error. This CIMS system is shown here to perform very well for OH reactivity below 15 s−1 and NO concentrations below 4 ppb, both values that are rarely exceeded at the MOHp site. Thus when deployed in suitable chemical environments, this method can provide valuable continuous long-term measurements of OH reactivity. The characterization utilizes results from chamber, laboratory and modelling studies and includes the discussion and quantification of sources of uncertainties.