Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,278 result(s) for "Gill, Andrew"
Sort by:
SETTING THE CONTEXT FOR OFFSHORE WIND DEVELOPMENT EFFECTS ON FISH AND FISHERIES
Changes to fisheries that result from offshore wind farm (OWF) installations may be considered good or bad depending on various stakeholders’ perspectives. OWFs can act as artificial reefs that may benefit secondary fish production, but such effects may also have ecological consequences. The fisheries exclusion effect that turns some OWFs into no-go areas, hence effectively no-take zones, could provide resource enhancements or redistribution. However, the displacement of fishing effort may have consequences to fisheries elsewhere. Changes in the sensory environment related to sound, as well as electromagnetic fields and physical alterations of current and wind wakes, may have as yet unknown impacts on fisheries resources. Understanding the interactions among effect type, OWF development phase, and spatiotemporal population dynamics of commercial and recreational species remains challenging, exemplified by the commercial fishery lobster genus Homarus in European and North American waters. While knowledge of the interactions between resource species and OWFs is improving, there remain questions on the wider interaction between and consequences of OWFs and fisheries. Studies of this wider relevance should aim to improve understanding of the economic and societal impacts of OWFs linked to ecosystem services that support fisheries. Furthermore, assisting fisheries management and providing advice requires monitoring and survey data collection at appropriate spatiotemporal scales. This information will help to determine whether OWFs have any meaningful impact on regional fisheries, and increased investments will be needed to target scientifically appropriate monitoring of OWFs and fisheries, which is supported by better integrated policy and regulation.
ENVIRONMENTAL AND ECOLOGICAL EFFECTS OF OCEAN RENEWABLE ENERGY DEVELOPMENT
Marine renewable energy promises to assist in the effort to reduce carbon emissions worldwide. As with any large-scale development in the marine environment, however, it comes with uncertainty about potential environmental impacts, most of which have not been adequately evaluated—in part because many of the devices have yet to be deployed and tested. We review the nature of environmental and, more specifically, ecological effects of the development of diverse types of marine renewable energy—covering marine wind, wave, tidal, ocean current, and thermal gradient—and discuss the current state of knowledge or uncertainty on how these effects may be manifested. Many of the projected effects are common with other types of development in the marine environment; for example, additional structures lead to concerns for entanglement, habitat change, and community change. Other effects are relatively unique to marine energy conversion, and specific to the type of energy being harnessed, the individual device type, or the reduction in energy in marine systems. While many potential impacts are unavoidable but measurable, we would argue it is possible (and necessary) to minimize others through careful device development and site selection; the scale of development, however, will lead to cumulative effects that we must understand to avoid environmental impacts. Renewable energy developers, regulators, scientists, engineers, and ocean stakeholders must work together to achieve the common dual objectives of clean renewable energy and a healthy marine environment.
Ventilation Onset Prior to Umbilical Cord Clamping (Physiological-Based Cord Clamping) Improves Systemic and Cerebral Oxygenation in Preterm Lambs
As measurement of arterial oxygen saturation (SpO2) is common in the delivery room, target SpO2 ranges allow clinicians to titrate oxygen therapy for preterm infants in order to achieve saturation levels similar to those seen in normal term infants in the first minutes of life. However, the influence of the onset of ventilation and the timing of cord clamping on systemic and cerebral oxygenation is not known. We investigated whether the initiation of ventilation, prior to, or after umbilical cord clamping, altered systemic and cerebral oxygenation in preterm lambs. Systemic and cerebral blood-flows, pressures and peripheral SpO2 and regional cerebral tissue oxygenation (SctO2) were measured continuously in apnoeic preterm lambs (126±1 day gestation). Positive pressure ventilation was initiated either 1) prior to umbilical cord clamping, or 2) after umbilical cord clamping. Lambs were monitored intensively prior to intervention, and for 10 minutes following umbilical cord clamping. Clamping the umbilical cord prior to ventilation resulted in a rapid decrease in SpO2 and SctO2, and an increase in arterial pressure, cerebral blood flow and cerebral oxygen extraction. Ventilation restored oxygenation and haemodynamics by 5-6 minutes. No such disturbances in peripheral or cerebral oxygenation and haemodynamics were observed when ventilation was initiated prior to cord clamping. The establishment of ventilation prior to umbilical cord clamping facilitated a smooth transition to systemic and cerebral oxygenation following birth. SpO2 nomograms may need to be re-evaluated to reflect physiological management of preterm infants in the delivery room.
The Interaction Between Resource Species and Electromagnetic Fields Associated with Electricity Production by Offshore Wind Farms
As offshore wind energy production increases, the number of subsea cables will proliferate along with associated electromagnetic field (EMF) emissions. Understanding how EMF interactions (a potential pressure) affect resource species (receptor) requires an improved knowledge base to aid management decisions. Within the framework of a potential effect on a receptor, we review key aspects of assessing EMF exposure. From the vantage point of the receptor species, we consider how their perception of EMF varies through time as a consequence of species’ sensory biology, life history theory, and movement ecology. We review known effects of EMFs on species and consider EMF interactions with benthic, bentho-pelagic, and migratory species, focusing on functional roles of electro- and magneto-reception at different life stages. We must move our understanding from individual effects to population-level impacts. The present knowledge base has been drawn from a diverse range of laboratory and field approaches, which can be better integrated to address gaps and reach the desired knowledge base. Improving models of future scenarios depends on taking a more systematic and consistent approach to measuring and modeling alternating current and direct current EMFs and accounting for cable properties and local environmental characteristics. We make recommendations to help decipher receptor species’ responses. Acquiring such knowledge will enable us to translate EMFs, and their effects and encounter rates, into impact assessments for resource species to inform appropriate management.
Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species
Many marine animals have evolved sensory abilities to use electric and magnetic cues in essential aspects of life history, such as to detect prey, predators and mates as well as to orientate and migrate. Potential disruption of vital cues by human activities must be understood in order to mitigate potential negative influences. Cable deployments in coastal waters are increasing worldwide, in capacity and number, owing to growing demands for electrical power and telecommunications. Increasingly, the local electromagnetic environment used by electro- and magneto-sensitive species will be altered. We quantified biologically relevant behavioural responses of the presumed, magneto-receptive American lobster and the electro-sensitive Little skate to electromagnetic field (EMF) emissions of a subsea high voltage direct current (HVDC) transmission cable for domestic electricity supply. We demonstrate a striking increase in exploratory/foraging behaviour in skates in response to EMF and a more subtle exploratory response in lobsters. In addition, by directly measuring both the magnetic and electric field components of the EMF emitted by HVDC cables we found that there were DC and unexpectedly AC components. Modelling, restricted to the DC component, showed good agreement with measured results. Our cross-disciplinary study highlights the need to integrate an understanding of the natural and anthropogenic EMF environment together with the responses of sensitive animals when planning future cable deployments and predicting their environmental effects.
Offshore renewable energy: ecological implications of generating electricity in the coastal zone
1. Global-scale environmental degradation and its links with non-renewable fossil fuels have led to an increasing interest in generating electricity from renewable energy resources. Much of this interest centres on offshore renewable energy developments (ORED). The large scale of proposed ORED will add to the existing human pressures on coastal ecosystems, therefore any ecological costs and benefits must be determined. 2. The current pressures on coastal ecology set the context within which the potential impacts (both positive and negative) of offshore renewable energy generation are discussed. 3. The number of published peer-review articles relating to renewable energy has increased dramatically since 1991. Significantly, only a small proportion of these articles relate to environmental impacts and none considers coastal ecology. 4. Actual or potential environmental impact can occur during construction, operation and/or decommissioning of ORED. 5. Construction and decommissioning are likely to cause significant physical disturbance to the local environment. There are both short- and long-term implications for the local biological communities. The significance of any effects is likely to depend on the natural disturbance regime and the stability and resilience of the communities. 6. During day-to-day operation, underwater noise, emission of electromagnetic fields and collision or avoidance with the energy structures represent further potential impacts on coastal species, particularly large predators. The wider ecological implications of any direct and indirect effects are discussed. 7. Synthesis and applications. This review demonstrates that offshore renewable energy developments will have direct and, potentially, indirect consequences for coastal ecology, with these effects occurring at different scales. Ecologists should be involved throughout all the phases of an ORED to ensure that appropriate assessments of the interaction of single and multiple developments with the coastal environment are undertaken.
Imaging breast cancer using hyperpolarized carbon-13 MRI
Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2−), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2− invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
Radiomic image features are becoming a promising non-invasive method to obtain quantitative measurements for tumour classification and therapy response assessment in oncological research. However, despite its increasingly established application, there is a need for standardisation criteria and further validation of feature robustness with respect to imaging acquisition parameters. In this paper, the robustness of radiomic features extracted from computed tomography (CT) images is evaluated for liver tumour and muscle, comparing the values of the features in images reconstructed with two different slice thicknesses of 2.0 mm and 5.0 mm. Novel approaches are presented to address the intrinsic dependencies of texture radiomic features, choosing the optimal number of grey levels and correcting for the dependency on volume. With the optimal values and corrections, feature values are compared across thicknesses to identify reproducible features. Normalisation using muscle regions is also described as an alternative approach. With either method, a large fraction of features (75–90%) was found to be highly robust (< 25% difference). The analyses were performed on a homogeneous CT dataset of 43 patients with hepatocellular carcinoma, and consistent results were obtained for both tumour and muscle tissue. Finally, recommended guidelines are included for radiomic studies using variable slice thickness.
Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations
Objectives To assess the feasibility of the mono-exponential, bi-exponential and stretched-exponential models in evaluating response of breast tumours to neoadjuvant chemotherapy (NACT) at 3 T. Methods Thirty-six female patients (median age 53, range 32–75 years) with invasive breast cancer undergoing NACT were enrolled for diffusion-weighted MRI (DW-MRI) prior to the start of treatment. For assessment of early response, changes in parameters were evaluated on mid-treatment MRI in 22 patients. DW-MRI was performed using eight b values (0, 30, 60, 90, 120, 300, 600, 900 s/mm 2 ). Apparent diffusion coefficient (ADC), tissue diffusion coefficient ( D t ), vascular fraction (ƒ), distributed diffusion coefficient (DDC) and alpha (α) parameters were derived. Then t tests compared the baseline and changes in parameters between response groups. Repeatability was assessed at inter- and intraobserver levels. Results All patients underwent baseline MRI whereas 22 lesions were available at mid-treatment. At pretreatment, mean diffusion coefficients demonstrated significant differences between groups ( p  < 0.05). At mid-treatment, percentage increase in ADC and DDC showed significant differences between responders (49 % and 43 %) and non-responders (21 % and 32 %) ( p  = 0.03, p  = 0.04). Overall, stretched-exponential parameters showed excellent repeatability. Conclusion DW-MRI is sensitive to baseline and early treatment changes in breast cancer using non-mono-exponential models, and the stretched-exponential model can potentially monitor such changes. Key points • Baseline diffusion coefficients demonstrated significant differences between complete pathological responders and non-responders. • Increase in ADC and DDC at mid-treatment can discriminate responders and non-responders. • The ƒ fraction at mid-treatment decreased in responders whereas increased in non-responders. • The mono- and stretched-exponential models showed excellent inter- and intrarater repeatability. • Treatment effects can potentially be assessed by non-mono-exponential diffusion models.
Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer
Hyperpolarised magnetic resonance imaging (HP  13 C-MRI) is an emerging clinical technique to detect [1- 13 C]lactate production in prostate cancer (PCa) following intravenous injection of hyperpolarised [1- 13 C]pyruvate. Here we differentiate clinically significant PCa from indolent disease in a low/intermediate-risk population by correlating [1- 13 C]lactate labelling on MRI with the percentage of Gleason pattern 4 (%GP4) disease. Using immunohistochemistry and spatial transcriptomics, we show that HP  13 C-MRI predominantly measures metabolism in the epithelial compartment of the tumour, rather than the stroma. MRI-derived tumour [1- 13 C]lactate labelling correlated with epithelial mRNA expression of the enzyme lactate dehydrogenase (LDHA and LDHB combined), and the ratio of lactate transporter expression between the epithelial and stromal compartments (epithelium-to-stroma MCT4). We observe similar changes in MCT4, LDHA, and LDHB between tumours with primary Gleason patterns 3 and 4 in an independent TCGA cohort. Therefore, HP  13 C-MRI can metabolically phenotype clinically significant disease based on underlying metabolic differences in the epithelial and stromal tumour compartments. Your paper will be accompanied by the following editor’s summary. Please let us know if there are any inaccuracies: ‘Hyperpolarised ¹³C-MRI is used to image cancer metabolism. Here the authors use this technique in prostate cancer and show that it can differentiate distinct disease states.