Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
360
result(s) for
"Gill, Anthony J"
Sort by:
Overview of the 2022 WHO Classification of Paragangliomas and Pheochromocytomas
2022
This review summarizes the classification of tumors of the adrenal medulla and extra-adrenal paraganglia as outlined in the 5th series of the WHO Classification of Endocrine and Neuroendocrine Tumors. The non-epithelial neuroendocrine neoplasms (NENs) known as paragangliomas produce predominantly catecholamines and secrete them into the bloodstream like hormones, and they represent a group of NENs that have exceptionally high genetic predisposition. This classification discusses the embryologic derivation of the cells that give rise to these lesions and the historical evolution of the terminology used to classify their tumors; paragangliomas can be sympathetic or parasympathetic and the term pheochromocytoma is used specifically for intra-adrenal paragangliomas that represent the classical sympathetic form. In addition to the general neuroendocrine cell biomarkers INSM1, synaptophysin, and chromogranins, these tumors are typically negative for keratins and instead have highly specific biomarkers, including the GATA3 transcription factor and enzymes involved in catecholamine biosynthesis: tyrosine hydroxylase that converts L-tyrosine to L-DOPA as the rate-limiting step in catecholamine biosynthesis, dopamine beta-hydroxylase that is present in cells expressing norepinephrine, and phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine and therefore can be used to distinguish tumors that make epinephrine. In addition to these important tools that can be used to confirm the diagnosis of a paraganglioma, new tools are recommended to determine genetic predisposition syndromes; in addition to the identification of precursor lesions, molecular immunohistochemistry can serve to identify associations with SDHx, VHL, FH, MAX, and MEN1 mutations, as well as pseudohypoxia-related pathogenesis. Paragangliomas have a well-formed network of sustentacular cells that express SOX10 and S100, but this is not a distinctive feature, as other epithelial NENs also have sustentacular cells. Indeed, it is the presence of such cells and the association with ganglion cells that led to a misinterpretation of several unusual lesions as paragangliomas; in the 2022 WHO classification, the tumor formerly known as cauda equina paraganglioma is now classified as cauda equina neuroendocrine tumor and the lesion known as gangliocytic paraganglioma has been renamed composite gangliocytoma/neuroma and neuroendocrine tumor (CoGNET). Since the 4th edition of the WHO, paragangliomas have no longer been classified as benign and malignant, as any lesion can have metastatic potential and there are no clear-cut features that can predict metastatic behavior. Moreover, some tumors are lethal without metastatic spread, by nature of local invasion involving critical structures. Nevertheless, there are features that can be used to identify more aggressive lesions; the WHO does not endorse the various scoring systems that are reviewed but also does not discourage their use. The identification of metastases is also complex, particularly in patients with germline predisposition syndromes, since multiple lesions may represent multifocal primary tumors rather than metastatic spread; the identification of paragangliomas in unusual locations such as lung or liver is not diagnostic of metastasis, since these may be primary sites. The value of sustentacular cells and Ki67 labeling as prognostic features is also discussed in this new classification. A staging system for pheochromocytoma and extra-adrenal sympathetic PGLs, introduced in the 8th Edition AJCC Cancer Staging Manual, is now included. This paper also provides a summary of the criteria for the diagnosis of a composite paragangliomas and summarizes the classification of neuroblastic tumors. This review adopts a practical question–answer framework to provide members of the multidisciplinary endocrine oncology team with a most up-to-date approach to tumors of the adrenal medulla and extra-adrenal paraganglia.
Journal Article
Overview of the 2022 WHO Classification of Parathyroid Tumors
2022
The 2022 WHO classification reflects increases in the knowledge of the underlying pathogenesis of parathyroid disease. In addition to the classic characteristic features of parathyroid neoplasms, subtleties in histologic features which may indicate an underlying genetic abnormality reflect increased understanding of the clinical manifestations, histologic, and genetic correlation in parathyroid disease. The importance of underlying genetic aberrancies is emphasized due to their significance to the care of the patient. Traditionally, the term “parathyroid hyperplasia” has been applied to multiglandular parathyroid disease; however, the concept of hyperplasia is generally no longer supported in the context of primary hyperparathyroidism since affected glands are usually composed of multiple “clonal” neoplastic proliferations. In light of these findings and management implications for patient care, the 2022 WHO classification endorses primary hyperparathyroidism-related multiglandular parathyroid disease (multiglandular multiple parathyroid adenomas) as a germline susceptibility-driven multiglandular parathyroid neoplasia. From such a perspective, pathologists can provide additional value to genetic triaging by recognizing morphological and immunohistochemical harbingers of MEN1, CDKN1B, MAX, and CDC73-related manifestations. In the current WHO classification, the term “parathyroid hyperplasia” is now used primarily in the setting of secondary hyperplasia which is most often caused by chronic renal failure. In addition to expansion in the histological features, including those that may be suggestive of an underlying genetic abnormality, there are additional nomenclature changes in the 2022 WHO classification reflecting increased understanding of the underlying pathogenesis of parathyroid disease. The new classification no longer endorses the use of “atypical parathyroid adenoma”. This entity is now being replaced with the term of “atypical parathyroid tumor” to reflect a parathyroid neoplasm of uncertain malignant potential. The differential diagnoses of atypical parathyroid tumor are discussed along with the details of worrisome clinical and laboratory findings, and also features that define atypical histological and immunohistochemical findings to qualify for this diagnosis. The histological definition of parathyroid carcinoma still requires one of the following findings: (i) angioinvasion (vascular invasion) characterized by tumor invading through a vessel wall and associated thrombus, or intravascular tumor cells admixed with thrombus, (ii) lymphatic invasion, (iii) perineural (intraneural) invasion, (iv) local malignant invasion into adjacent anatomic structures, or (v) histologically/cytologically documented metastatic disease. In parathyroid carcinomas, the documentation of mitotic activity (e.g., mitoses per 10mm2) and Ki67 labeling index is recommended. Furthermore, the importance of complete submission of parathyroidectomy specimens for microscopic examination, and the crucial role of multiple levels along with ancillary biomarkers have expanded the diagnostic workup of atypical parathyroid tumors and parathyroid carcinoma to ensure accurate characterization of parathyroid neoplasms. The concept of parafibromin deficiency has been expanded upon and term “parafibromin deficient parathyroid neoplasm” is applied to a parathyroid neoplasm showing complete absence of nuclear parafibromin immunoreactivity. Nucleolar loss is considered as abnormal finding that requires further molecular testing to confirm its biological significance. The 2022 WHO classification emphasizes the role of molecular immunohistochemistry in parathyroid disease. By adopting a question–answer framework, this review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the underlying pathogenesis of parathyroid disease that are now reflected in the updated classification and new entities in the 2022 WHO classification.
Journal Article
Prevalence of PD-L1 expression in matched recurrent and/or metastatic sarcoma samples and in a range of selected sarcomas subtypes
by
Tran, Dinh
,
Cheah, Alison L.
,
Gill, Anthony J.
in
Apoptosis
,
B cells
,
Biology and Life Sciences
2020
We assessed the frequency of programmed death-ligand 1 (PD-L1) expression by immunohistochemistry (IHC) in a cohort of 522 sarcomas from 457 patients, incuding a subset of 46 patients with 63 matched samples from local recurrence or metastases with primary tumours and/or metachronous metastases. We also investigated the correlation of PD-L1 with the presence and degree of tumour-infiltrating lymphocytes (TILs) in a subset of cases. IHC was performed using the PD-L1 SP263 companion kit (VENTANA) on tissue microarrays from an archival cohort. Evaluation of PD-L1 and TILs was performed on full sections for a subset of 23 cases. Fisher's exact and Mann Whitney test were used to establish significance (P <0.05). PD-L1 positive expression (≥1%) was identified in 31% of undifferentiated pleomorphic sarcomas, 29% of angiosarcomas, 26% of rhabdomyosarcomas, 18% of myxofibrosarcomas, 11% of leiomyosarcomas and 10% of dedifferentiated liposarcomas. Negative expression was present in all atypical lipomatous tumous/well-differentiated lipoasarcomas, myxoid liposarcomas, synovial sarcomas, pleomorphic liposarcomas, and Ewing sarcomas. PD-L1 IHC was concordant in 81% (38 of 47) of matched/paired samples. PD-L1 IHC was discordant in 19% (9 of 47 matched/paired samples), displaying differences in the proportion of cells expressing PD-L1 amongst paired samples with the percentage of PD-L1-positive cells increasing in the metastatic/recurrent site compared to the primary in 6 of 9 cases (67%). Significant correlation between PD-L1 expression and the degree of TILs was exclusively identified in the general cohort of leiomyosarcomas, but not in other sarcoma subtypes or in metastatic/recurrent samples. We conclude that the prevalence of PD-L1 expression in selected sarcomas is variable and likely to be clone dependent. Importantly, we demonstrated that PD-L1 can objectively increase in a small proportion of metastases/recurrent sarcomas, offering the potential of treatment benefit to immune checkpoint inhibitors in this metastatic setting.
Journal Article
Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing
2016
The tumour suppressor p53 is mutated in cancer, including over 96% of high-grade serous ovarian cancer (HGSOC). Mutations cause loss of wild-type p53 function due to either gain of abnormal function of mutant p53 (mutp53), or absent to low mutp53. Massively parallel sequencing (MPS) enables increased accuracy of detection of somatic variants in heterogeneous tumours. We used MPS and immunohistochemistry (IHC) to characterise HGSOCs for
TP53
mutation and p53 expression.
TP53
mutation was identified in 94% (68/72) of HGSOCs, 62% of which were missense. Missense mutations demonstrated high p53 by IHC, as did 35% (9/26) of non-missense mutations. Low p53 was seen by IHC in 62% of HGSOC associated with non-missense mutations. Most wild-type
TP53
tumours (75%, 6/8) displayed intermediate p53 levels. The overall sensitivity of detecting a
TP53
mutation based on classification as ‘Low’, ‘Intermediate’ or ‘High’ for p53 IHC was 99%, with a specificity of 75%. We suggest p53 IHC can be used as a surrogate marker of
TP53
mutation in HGSOC; however, this will result in misclassification of a proportion of
TP53
wild-type and mutant tumours. Therapeutic targeting of mutp53 will require knowledge of both
TP53
mutations and mutp53 expression.
Journal Article
Single-nuclei and bulk-tissue gene-expression analysis of pheochromocytoma and paraganglioma links disease subtypes with tumor microenvironment
by
Balachander, Shiva
,
Dahia, Patricia L. M.
,
Flynn, Aidan
in
45/91
,
631/67/1459/1280
,
631/67/1459/1963
2022
Pheochromocytomas (PC) and paragangliomas (PG) are rare neuroendocrine tumors associated with autonomic nerves. Here we use single-nuclei RNA-seq and bulk-tissue gene-expression data to characterize the cellular composition of PCPG and normal adrenal tissues, refine tumor gene-expression subtypes and make clinical and genotypic associations. We confirm seven PCPG gene-expression subtypes with significant genotype and clinical associations. Tumors with mutations in
VHL
, SDH-encoding genes (
SDHx
) or
MAML3
-fusions are characterized by hypoxia-inducible factor signaling and neoangiogenesis. PCPG have few infiltrating lymphocytes but abundant macrophages. While neoplastic cells transcriptionally resemble mature chromaffin cells, early chromaffin and neuroblast markers are also features of some PCPG subtypes. The gene-expression profile of metastatic
SDHx
-related PCPG indicates these tumors have elevated cellular proliferation and a lower number of non-neoplastic Schwann-cell-like cells, while
GPR139
is a potential theranostic target. Our findings therefore clarify the diverse transcriptional programs and cellular composition of PCPG and identify biomarkers of potential clinical significance.
Pheochromocytomas and paragangliomas (PCPG) are rare neuroendocrine tumours. Here, the authors use single-nuclei and bulk-tissue RNA-seq to characterise PCPG tumours and their microenvironments and reveal molecular subtypes as well as expression patterns associated with metastasis.
Journal Article
Genotype–Phenotype Correlations and Clinical Outcomes in 155 Cases of Pheochromocytoma and Paraganglioma
by
Clifton-Bligh, Roderick
,
Sidhu, Stan B.
,
Wang, Hogan
in
Abdominal Surgery
,
Adrenal Gland Neoplasms - genetics
,
Adrenal Gland Neoplasms - pathology
2023
Background
Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumours, often associated with germline mutations that influence the disease biology and clinical course. We aimed to describe the genotypic and phenotypic characteristics of a consecutive series of PPGL patients and correlate mutation status with clinical outcomes.
Methods
We performed a retrospective cohort study of all PPGL patients who presented to a tertiary referral centre between March 2005 and February 2022. Genotypic, phenotypic and follow-up data were analysed.
Results
A total of 140 patients were included. Of these, 94 (67%) patients underwent genetic testing and a mutation was detected in 36 (38%) patients. Mutation presence was associated with younger age, smaller tumour size and bilateral adrenal tumours. Disease recurrence occurred at a median time of 5.4 (IQR 2.8–11.0) years after treatment in 21 (15%) patients, of which 14 (67%) had a mutation in a susceptibility gene. Recurrence pattern was influenced by mutation type; higher local recurrence risk for
SDHA
,
SDHB,
and MEN2B disease, and higher metastatic risk for
SDHB
,
VHL
and MEN2A disease. Recurrence occurred in three (3%) patients with mutation absence. Multivariate analysis revealed that age ≤40 years and mutation presence were associated with increased risk of disease recurrence.
Conclusions
Genotypic characteristics strongly influence disease presentation and recurrence risk, which may occur more than 5 years after initial treatment. Routine genetic testing of PPGL patients is warranted given the high prevalence of mutations, allowing for prognostication and tailored follow-up. In the presence of germline mutations, follow-up should be life-long.
Graphical abstract
Journal Article
“High-grade oncocytic renal tumor”: morphologic, immunohistochemical, and molecular genetic study of 14 cases
by
Ozlem Tanas Isikci
,
Alaghehbandan, Reza
,
Hora, Milan
in
Abnormalities
,
Cathepsin K
,
Chromosome 1
2018
The spectrum of the renal oncocytic tumors has been expanded in recent years to include several novel and emerging entities. We describe a cohort of novel, hitherto unrecognized and morphologically distinct high-grade oncocytic tumors (HOT), currently diagnosed as “unclassified” in the WHO classification. We identified 14 HOT by searching multiple institutional archives. Morphologic, immunohistochemical (IHC), molecular genetic, and molecular karyotyping studies were performed to investigate these tumors. The patients included 3 men and 11 women, with age range from 25 to 73 years (median 50, mean 49 years). Tumor size ranged from 1.5 to 7.0 cm in the greatest dimension (median 3, mean 3.4 cm). The tumors were all pT1 stage. Microscopically, they showed nested to solid growth, and focal tubulocystic architecture. The neoplastic cells were uniform with voluminous oncocytic cytoplasm. Prominent intracytoplasmic vacuoles were frequently seen, but no irregular (raisinoid) nuclei or perinuclear halos were present. All tumors demonstrated prominent nucleoli (WHO/ISUP grade 3 equivalent). Nine of 14 cases were positive for CD117 and cytokeratin (CK) 7 was either negative or only focally positive in of 6/14 cases. All tumors were positive for AE1-AE3, CK18, PAX 8, antimitochondrial antigen, and SDHB. Cathepsin K was positive in 13/14 cases and CD10 was positive in 12/13 cases. All cases were negative for TFE3, HMB45, Melan-A. No TFEB and TFE3 genes rearrangement was found in analyzable cases. By array CGH, complete chromosomal losses or gains were not found in any of the cases, and 3/9 cases showed absence of any abnormalities. Chromosomal losses were detected on chromosome 19 (4/9), 3 with losses of the short arm (p) and 1 with losses of both arms (p and q). Loss of chromosome 1 was found in 3/9 cases; gain of 5q was found in 1/9 cases. On molecular karyotyping, 3/3 evaluated cases showed loss of heterozygosity (LOH) on 16p11.2-11.1 and 2/3 cases showed LOH at 7q31.31. Copy number (CN) losses were found at 7q11.21 (3/3), Xp11.21 (3/3), Xp11.22-11.21 (3/3), and Xq24-25 (2/3). CN gains were found at 13q34 (2/3). Ten patients with available follow up information were alive and without disease progression, after a mean follow-up of 28 months (1 to 112 months). HOT is a tumor with unique morphology and its IHC profile appears mostly consistent. HOT should be considered as an emerging renal entity because it does not meet the diagnostic criteria for other recognized eosinophilic renal tumors, such as oncocytoma, chromophobe renal cell carcinoma (RCC), TFE3 and TFEB RCC, SDH-deficient RCC, and eosinophilic solid and cystic RCC.
Journal Article
Loss of expression of BAP1 is a useful adjunct, which strongly supports the diagnosis of mesothelioma in effusion cytology
2015
Although most mesotheliomas present with pleural effusions, it is controversial whether mesothelioma can be diagnosed with confidence in effusion cytology. Therefore, an ancillary marker of malignant mesothelial cells applicable in effusions would be clinically valuable.
BRCA-1-
associated protein (
BAP1
) is a tumor suppressor gene, which shows biallelic inactivation in approximately half of all mesotheliomas. We investigated whether loss of BAP1 expression by immunohistochemistry can be used to support a diagnosis of mesothelioma in effusion cytology. Immunohistochemistry for BAP1 was performed on cell blocks and interpreted blinded. 43 of 75 (57%) effusions associated with confirmed mesothelioma showed negative staining with positive internal controls. Of 57 effusions considered to have atypical mesothelial cells in the absence of a definitive diagnosis of mesothelioma, 8 cases demonstrated negative staining for BAP1. On follow-up six of these patients received a definitive diagnosis of mesothelioma in the subsequent 14 months (two were lost to follow-up immediately, and mesothelioma could not be excluded). Only 5 of 100 consecutive benign effusions were interpreted as BAP1 negative. One of these patients died soon after and mesothelioma could not be excluded. On unblinded review the four other patients with apparently negative BAP1 staining but no malignancy lacked convincing positive staining in non-neoplastic cells suggesting that BAP1 immunohistochemistry may have initially been misinterpreted. 47 effusions with adenocarcinoma were BAP1 positive. We conclude that loss of BAP1 expression, while not definitive, can be used to support the diagnosis of mesothelioma in effusion cytology. We caution that interpretation of BAP1 immunohistochemistry on cell block may be difficult and that convincing positive staining in non-neoplastic cells is required before atypical cells are considered negative. We also note that BAP1 loss is not a sensitive test as it occurs in only half of all mesotheliomas and cannot be used to exclude the diagnosis.
Journal Article
Serum and tissue metallome of pancreatic ductal adenocarcinoma
2024
Pancreatic ductal adenocarcinoma (PDAC) patients have late presentation at the time of diagnosis and a poor prognosis. Metal dyshomeostasis is known to play a role in cancer progression. However, the blood and tissue metallome of PDAC patients has not been assessed. This study aimed to determine the levels of essential and toxic metals in the serum and pancreatic tissue from PDAC patients. Serum samples were obtained from PDAC patients before surgical resection. Tissue (tumor and adjacent normal pancreas) were obtained from the surgically resected specimen. Inductively coupled plasma–mass spectrometry (ICP‐MS) analysis was performed to quantify the levels of 10 essential and 3 toxic metals in these samples. Statistical analysis was performed to identify dysregulated metals in PDAC and their role as potential diagnostic and prognostic biomarkers. Significantly decreased serum levels of magnesium, potassium, calcium, iron, zinc, selenium, arsenic, and mercury and increased levels of molybdenum were shown to be associated with PDAC. There were significantly decreased levels of zinc, manganese and molybdenum, and increased levels of calcium and selenium in the pancreatic tumor tissue compared with the adjacent normal pancreas. Notably, lower serum levels of calcium, iron, and selenium, and higher levels of manganese, were significantly associated with a poor prognosis (i.e., overall survival) in PDAC patients. In conclusion, this is the first study to comprehensively assess the serum and tissue metallome of PDAC patients. It identified the association of metals with PDAC diagnosis and prognosis.
Journal Article
Molecular Markers Guiding Thyroid Cancer Management
by
Sidhu, Stan B.
,
Maréchal-Ross, Isabella
,
Chou, Angela
in
Care and treatment
,
Cell cycle
,
DNA microarrays
2020
The incidence of thyroid cancer is rapidly increasing, mostly due to the overdiagnosis and overtreatment of differentiated thyroid cancer (TC). The increasing use of potent preclinical models, high throughput molecular technologies, and gene expression microarrays have provided a deeper understanding of molecular characteristics in cancer. Hence, molecular markers have become a potent tool also in TC management to distinguish benign from malignant lesions, predict aggressive biology, prognosis, recurrence, as well as for identification of novel therapeutic targets. In differentiated TC, molecular markers are mainly used as an adjunct to guide management of indeterminate nodules on fine needle aspiration biopsies. In contrast, in advanced thyroid cancer, molecular markers enable targeted treatments of affected signalling pathways. Identification of the driver mutation of targetable kinases in advanced TC can select treatment with mutation targeted tyrosine kinase inhibitors (TKI) to slow growth and reverse adverse effects of the mutations, when traditional treatments fail. This review will outline the molecular landscape and discuss the impact of molecular markers on diagnosis, surveillance and treatment of differentiated, poorly differentiated and anaplastic follicular TC.
Journal Article