Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
729 result(s) for "Gilles, V."
Sort by:
A big garden
\"This wonderfully insightful and brilliantly illustrated book on gardens and gardeners will provide hours of absorbing fun while introducing young readers to the joys of planning, planting, and harvesting. In vibrant watercolors Vincent Grave shows us how there's something happening every month in the Big Garden. Renowned landscape designer Gilles Clement's lyrical text gently teaches young readers not only what's involved in planning a garden, but how plants, insects, and humans interact all year long to make the garden thrive. Along the way, we witness a forest of mushrooms, the miracle of eggs, and the incredible universe found in a single flower. In every picture, tiny gardeners busy themselves among the leaves, seeds, and earth. Fascinating, heartfelt, and elegantly produced, this book celebrates the deep connection between humans and nature\"-- Publisher's description.
Millimetre Wave Kinetic Inductance Parametric Amplification using Ridge Gap Waveguide
We present the design and simulation methodology of a superconducting ridge-gap waveguide (RGWG) as a potential basis for mm-wave kinetic inductance travelling wave parametric amplifiers (KI-TWPAs). A superconducting RGWG was designed using Ansys HFSS to support a quasi-TEM mode of transmission over a bandwidth of 20–120 GHz with its internal dimensions optimised for integration with W-band rectangular waveguide. A design of an impedance loaded travelling wave structure incorporating periodic perturbations of the ridge was described. A method to simulate the nonlinear kinetic inductance via user-defined components in Keysight’s ADS was outlined, which yielded the power dependent S-parameters and parametric signal gain. A RGWG with a 30 nm NbTiN coating and 5 μ m conductor spacing, corresponding to a kinetic inductance fraction α ∼ 60 % was used for the description of a KI-TWPA with 900 perturbations equivalent to a physical length 25 cm that achieved more than 10 dB of signal gain over a 75–110 GHz bandwidth via 4-wave mixing (4WM).
Parametric Amplification via Superconducting Contacts in a Ka Band Niobium Pillbox Cavity
Superconducting parametric amplifiers are commonly fabricated using planar transmission lines with a nonlinear inductance provided by either Josephson junctions or the intrinsic kinetic inductance of the thin film. However, Banys et al. (J Low Temp Phys, 2020) reported nonlinear behaviour in a niobium pillbox cavity, hypothesising that below T c , the pair iris-bulk resonator would act as a superconducting contact surface exploiting a Josephson-like nonlinearity. This work investigates this effect further by applying Keysight Technologies’ Advanced Design System (ADS) to simulate the cavity using an equivalent circuit model that includes a user defined Josephson inductance component. The simulations show that for a resonance centred at ν 0 = 30.649 GHz, when two tones (pump and signal) are injected into the cavity, mixing and parametric gain occur. The maximum achievable gain is explored when the resonator is taken to its bifurcation energy. These results are compared to cryogenic measurements where the pump and the signal are provided by a Vector Network Analyzer.
QUBIC Experiment Toward the First Light
The Q & U Bolometric Interferometer for Cosmology (QUBIC) is a cosmology experiment that aims to measure the B-mode polarization of the cosmic microwave background (CMB). Measurements of the primordial B-mode pattern of the CMB polarization are in fact among the most exciting goals in cosmology as it would allow testing of the inflationary paradigm. Many experiments are attempting to measure the B-modes, from the ground and the stratosphere, using imaging Stokes polarimeters. The QUBIC collaboration developed an innovative concept to measure CMB polarization using bolometric interferometry. This approach mixes the high sensitivity of bolometric detectors with the accurate control of systematics due to the interferometric layout of the instrument. We present the calibration results for the Technological Demonstrator, before its commissioning in the Argentinian observing site and preparation for first light.
TES Bolometer Arrays for the QUBIC B-Mode CMB Experiment
QUBIC is a ground-based experiment aiming to measure the B-mode polarization of the cosmic microwave background. The developed instrument is an innovative two-frequency band bolometric interferometer that will operate at 300 mK with NbSi TES arrays. In this paper, we describe the fabrication process of the detectors.
QUBIC: Using NbSi TESs with a Bolometric Interferometer to Characterize the Polarization of the CMB
Q & U Bolometric Interferometer for Cosmology (QUBIC) is an international ground-based experiment dedicated in the measurement of the polarized fluctuations of the Cosmic Microwave Background. It is based on bolometric interferometry, an original detection technique which combines the immunity to systematic effects of an interferometer with the sensitivity of low-temperature incoherent detectors. QUBIC will be deployed in Argentina, at the Alto Chorrillos mountain site near San Antonio de los Cobres, in the Salta Province. The QUBIC detection chain consists in 2048 NbSi transition edge sensors (TESs) cooled to 350 mK.The voltage-biased TESs are read out with time domain multiplexing based on Superconducting QUantum Interference Devices at 1 K and a novel SiGe application-specific integrated circuit at 60 K allowing to reach an unprecedented multiplexing factor equal to 128. The QUBIC experiment is currently being characterized in the laboratory with a reduced number of detectors before upgrading to the full instrument. I will present the last results of this characterization phase with a focus on the detectors and readout system.
QUBIC: The Q & U Bolometric Interferometer for Cosmology
The Q & U Bolometric Interferometer for Cosmology, QUBIC, is an innovative experiment designed to measure the polarization of the cosmic microwave background and in particular the signature left therein by the inflationary expansion of the Universe. The expected signal is extremely faint; thus, extreme sensitivity and systematic control are necessary in order to attempt this measurement. QUBIC addresses these requirements using an innovative approach combining the sensitivity of transition-edge sensor cryogenic bolometers, with the deep control of systematics characteristic of interferometers. This makes QUBIC unique with respect to others' classical imagers experiments devoted to the CMB polarization. In this contribution, we report a description of the QUBIC instrument including recent achievements and the demonstration of the bolometric interferometry performed in laboratory. QUBIC will be deployed at the observation site in Alto Chorrillos, in Argentina, at the end of 2019.
Measuring the CMB primordial B-modes with Bolometric Interferometry
The Q&U Bolometric Interferometer for Cosmology (QL’BIC) is the first bolometric interferometer designed to measure the primordial B -mode polarization of the Cosmic Microwave Background (CMB). Bolometric interferometry is a novel technique that combines the sensitivity of bolometric detectors with the control of systematic effects that is typical of interferometry, both key features in the quest for the faint signal of the primordial B -modes. A unique feature is the so-called “spectral imaging”, i.e., the ability to recover the sky signal in several sub-bands within the physical band during data analysis. This feature provides an in-band spectral resolution of ∆ v / v ~ 0.04 that is unattainable by a traditional imager. This is a key tool for controlling the Galactic foregrounds contamination. In this paper, we describe the principles of bolometric interferometry, the current status of the QU BIC experiment and future prospects.