Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
40
result(s) for
"Giunta, Cecilia"
Sort by:
MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta
2016
Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in
MBTPS2
, which encodes site-2 metalloprotease (S2P).
MBTPS2
missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development.
Osteogenesis imperfecta (OI) is genetically linked to autosomal dominant or autosomal recessive mutations. Here, Marini
et al
. describe two families with X-chromosome-linked OI with mutations in MBTPS2 that alter regulated intramembrane proteolysis and subsequent defects in collagen crosslinking and osteoblast function.
Journal Article
Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers–Danlos syndrome
by
Cecilia Giunta
,
Jeeyon Jeong
,
Fudi Wang
in
Biological Sciences
,
Biological Transport
,
Cation Transport Proteins - genetics
2012
Significance Intracellular zinc is tightly controlled because zinc is essential but potentially toxic. Many organisms regulate zinc using storage vesicles/organelles, but whether mammals do so is unknown. Here, we show that human ZIP13 releases zinc from vesicular stores. Previous studies found that mutations in the ZIP13 gene, SLC39A13 , cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS) and speculated that ZIP13 exports zinc from the early secretory pathway and that zinc overload in the endoplasmic reticulum causes SCD-EDS. In contrast, our study suggests that SCD-EDS results from zinc deficiency in the endoplasmic reticulum resulting from zinc trapping in vesicular stores.
Journal Article
Clinical and Molecular Characterization of Classical-Like Ehlers-Danlos Syndrome Due to a Novel TNXB Variant
2019
The Ehlers-Danlos syndromes (EDS) constitute a clinically and genetically heterogeneous group of connective tissue disorders. Tenascin X (TNX) deficiency is a rare type of EDS, defined as classical-like EDS (clEDS), since it phenotypically resembles the classical form of EDS, though lacking atrophic scarring. Although most patients display a well-defined phenotype, the diagnosis of TNX-deficiency is often delayed or overlooked. Here, we described an additional patient with clEDS due to a homozygous null-mutation in the TNXB gene. A review of the literature was performed, summarizing the most important and distinctive clinical signs of this disorder. Characterization of the cellular phenotype demonstrated a distinct organization of the extracellular matrix (ECM), whereby clEDS distinguishes itself from most other EDS subtypes by normal deposition of fibronectin in the ECM and a normal organization of the α5β1 integrin.
Journal Article
Phenotypic variability of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation
2011
Background
The kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA) (OMIM 225400) is a rare inheritable connective tissue disorder characterized by a deficiency of collagen lysyl hydroxylase 1 (LH1; EC 1.14.11.4) due to mutations in
PLOD1
. Biochemically this results in underhydroxylation of collagen lysyl residues and, hence, an abnormal pattern of lysyl pyridinoline (LP) and hydroxylysyl pyridinoline (HP) crosslinks excreted in the urine. Clinically the disorder is characterized by hypotonia and kyphoscoliosis at birth, joint hypermobility, and skin hyperelasticity and fragility. Severe hypotonia usually leads to delay in gross motor development, whereas cognitive development is reported to be normal.
Methods
We describe the clinical, biochemical and molecular characterisation, as well as electron microscopy findings of skin, in 15 patients newly diagnosed with this rare type of Ehlers-Danlos syndrome.
Results
Age at diagnosis ranged from 5 months to 27 years, with only 1/3 of the patients been diagnosed correctly in the first year of life. A similar disease frequency was found in females and males, however a broad disease severity spectrum (intra- and interfamilial), independent of molecular background or biochemical phenotype, was observed. Kyphoscoliosis, one of the main clinical features was not present at birth in 4 patients. Importantly we also noted the occurrence of vascular rupture antenatally and postnatally, as well as developmental delay in 5 patients.
Conclusion
In view of these findings we propose that EDS VIA is a highly variable clinical entity, presenting with a broad clinical spectrum, which may also be associated with cognitive delay and an increased risk for vascular events. Genotype/phenotype association studies and additional molecular investigations in more extended EDS VIA populations will be necessary to further elucidate the cause of the variability of the disease severity.
Journal Article
Expanding the clinical and mutational spectrum of the Ehlers–Danlos syndrome, dermatosparaxis type
by
Malfait, Fransiska
,
Aryani, Omid
,
Van Damme, Tim
in
631/208/1516
,
631/208/2489/144
,
631/208/737
2016
Purpose:
The Ehlers–Danlos syndrome (EDS), dermatosparaxis type, is a recessively inherited connective tissue disorder caused by deficient activity of ADAMTS-2, an enzyme that cleaves the aminoterminal propeptide domain of types I, II, and III procollagen. Only 10 EDS dermatosparaxis patients have been reported, all presenting a recognizable phenotype with characteristic facial gestalt, extreme skin fragility and laxity, excessive bruising, and sometimes major complications due to visceral and vascular fragility.
Methods:
We report on five new EDS dermatosparaxis patients and provide a comprehensive overview of the current knowledge of the natural history of this condition.
Results:
We identified three novel homozygous loss-of-function mutations (c.2927_2928delCT, p.(Pro976Argfs*42); c.669_670dupG, p.(Pro224Argfs*24); and c.2751-2A>T) and one compound heterozygous mutation (c.2T>C, p.? and c.884_887delTGAA, p.(Met295Thrfs26*)) in
ADAMTS2
in five patients from four unrelated families. Three of these displayed a phenotype that was strikingly milder than that of previously reported patients.
Conclusion:
This study expands the clinical and molecular spectrum of the dermatosparaxis type of EDS to include a milder phenotypic variant and stresses the importance of good clinical criteria. To address this, we propose an updated set of criteria that accurately captures the multisystemic nature of the dermatosparaxis type of EDS.
Genet Med
18
9, 882–891.
Journal Article
Physiological cell bioprinting density in human bone-derived cell-laden scaffolds enhances matrix mineralization rate and stiffness under dynamic loading
by
Peterhans, Sheila
,
Rubert, Marina
,
Schädli, Gian Nutal
in
3D bioprinting
,
Alginic acid
,
Bioengineering and Biotechnology
2024
Human organotypic bone models are an emerging technology that replicate bone physiology and mechanobiology for comprehensive
in vitro
experimentation over prolonged periods of time. Recently, we introduced a mineralized bone model based on 3D bioprinted cell-laden alginate-gelatin-graphene oxide hydrogels cultured under dynamic loading using commercially available human mesenchymal stem cells. In the present study, we created cell-laden scaffolds from primary human osteoblasts isolated from surgical waste material and investigated the effects of a previously reported optimal cell printing density (5 × 10
6
cells/mL bioink) vs. a higher physiological cell density (10 × 10
6
cells/mL bioink). We studied mineral formation, scaffold stiffness, and cell morphology over a 10-week period to determine culture conditions for primary human bone cells in this microenvironment. For analysis, the human bone-derived cell-laden scaffolds underwent multiscale assessment at specific timepoints. High cell viability was observed in both groups after bioprinting (>90%) and after 2 weeks of daily mechanical loading (>85%). Bioprinting at a higher cell density resulted in faster mineral formation rates, higher mineral densities and remarkably a 10-fold increase in stiffness compared to a modest 2-fold increase in the lower printing density group. In addition, physiological cell bioprinting densities positively impacted cell spreading and formation of dendritic interconnections. We conclude that our methodology of processing patient-specific human bone cells, subsequent biofabrication and dynamic culturing reliably affords mineralized cell-laden scaffolds. In the future,
in vitro
systems based on patient-derived cells could be applied to study the individual phenotype of bone disorders such as osteogenesis imperfecta and aid clinical decision making.
Journal Article
Arterial fragility in kyphoscoliotic Ehlers-Danlos syndrome
by
Legrand, Anne
,
Frank, Michael
,
Giunta, Cecilia
in
Adult
,
Aneurysm, Dissecting - etiology
,
Aneurysm, Dissecting - genetics
2018
Pathogenic variants in the lysyl-hydroxylase-1 gene (PLOD1) are responsible for the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS). The disease is classically responsible for severe hypotonia at birth, progressive kyphoscoliosis, generalised joint hypermobility and scleral fragility. Arterial fragility is an important feature of the disease, but its characterisation remains limited. We report the clinical history of a 41-year-old woman who presented repeated arterial accidents, which occurred in previously normal medium size arteries within a limited time span of 2 years. Molecular investigations revealed compound heterozygosity for two PLOD1 gene deletions of exons 11–12 and 14–15. Arterial fragility is an important characteristic of kyphoscoliotic EDS. It manifests as spontaneous arterial rupture, dissections and dissecting aneurysms which may occur even during early childhood. This fragility is particularly likely to manifest during surgical intervention. Early medical management and surveillance may be indicated, but its modalities remain to be defined.
Journal Article
The Ehlers–Danlos syndromes
by
Francomano, Clair A.
,
Byers, Peter H.
,
Malfait, Fransiska
in
631/208/2489/144
,
Cancer Research
,
Connective tissue
2020
The Ehlers–Danlos syndromes (EDS) are a heterogeneous group of hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing and easy bruising. Fourteen different types of EDS are recognized, of which the molecular cause is known for 13 types. These types are caused by variants in 20 different genes, the majority of which encode the fibrillar collagen types I, III and V, modifying or processing enzymes for those proteins, and enzymes that can modify glycosaminoglycan chains of proteoglycans. For the hypermobile type of EDS, the molecular underpinnings remain unknown. As connective tissue is ubiquitously distributed throughout the body, manifestations of the different types of EDS are present, to varying degrees, in virtually every organ system. This can make these disorders particularly challenging to diagnose and manage. Management consists of a care team responsible for surveillance of major and organ-specific complications (for example, arterial aneurysm and dissection), integrated physical medicine and rehabilitation. No specific medical or genetic therapies are available for any type of EDS.
The Ehlers–Danlos syndromes are a group of genetically heterogeneous connective tissue disorders with a wide range of clinical manifestations. This Primer discusses the epidemiology, mechanisms, diagnosis and treatment of these syndromes.
Journal Article
Obstructive sleep apnoea and quality of life in Ehlers-Danlos syndrome: a parallel cohort study
2017
BackgroundPatients with the connective tissue disorder Ehlers-Danlos syndrome (EDS) often suffer from fatigue, excessive daytime sleepiness and impaired quality of life. Obstructive sleep apnoea (OSA) may be an underlying cause for these symptoms but its prevalence in this population is unclear.MethodsIn this prospective parallel-cohort study, we included 100 adult patients with EDS (46% hypermobile-type, 35% classical-type and 19% other), which were one-to-one matched to 100 healthy adult controls according to sex, age, weight and height. Participants underwent structured interviews (including short-form 36) and level-3 respiratory polygraphy. OSA was defined as apnoea–hypopnea index ≥5/hour. Photographic craniofacial phenotyping was conducted in a subgroup. Conditional logistic regression was used to compare the prevalence of OSA.ResultsIn patients with EDS, OSA prevalence was 32% versus 6% in the matched control group (OR 5.3 (95% CI 2.5 to 11.2); p<0.001). The EDS group reported impaired quality of life in all dimensions (p<0.05) and significantly higher excessive daytime sleepiness measured by the Epworth Sleepiness Scale (median (quartiles) 11 (7–14) vs 7 (5–10); p<0.001). OSA severity was positively associated with daytime sleepiness and lower quality of life in the EDS group. There was no evidence of a difference between the two study groups in terms of craniofacial phenotypes.ConclusionsThe prevalence of OSA is higher in patients with EDS than in a matched control group. This is of clinical relevance as it is associated with fatigue, excessive daytime sleepiness and impaired quality of life. Further studies are needed to assess the clinical benefit of OSA treatment in patients with EDS.Trial registration number NCT02435745.
Journal Article
Pathogenic variants in PLOD3 result in a Stickler syndrome-like connective tissue disorder with vascular complications
2019
BackgroundPathogenic PLOD3 variants cause a connective tissue disorder (CTD) that has been described rarely. We further characterise this CTD and propose a clinical diagnostic label to improve recognition and diagnosis of PLOD3-related disease.MethodsReported PLOD3 phenotypes were compared with known CTDs utilising data from three further individuals from a consanguineous family with a homozygous PLOD3 c.809C>T; p.(Pro270Leu) variant. PLOD3 mRNA expression in the developing embryo was analysed for tissue-specific localisation. Mouse microarray expression data were assessed for phylogenetic gene expression similarities across CTDs with overlapping clinical features.ResultsKey clinical features included ocular abnormalities with risk for retinal detachment, sensorineural hearing loss, reduced palmar creases, finger contractures, prominent knees, scoliosis, low bone mineral density, recognisable craniofacial dysmorphisms, developmental delay and risk for vascular dissection. Collated clinical features showed most overlap with Stickler syndrome with variable features of Ehlers-Danlos syndrome (EDS) and epidermolysis bullosa (EB). Human lysyl hydroxylase 3/PLOD3 expression was localised to the developing cochlea, eyes, skin, forelimbs, heart and cartilage, mirroring the clinical phenotype of this disorder.ConclusionThese data are consistent with pathogenic variants in PLOD3 resulting in a clinically distinct Stickler-like syndrome with vascular complications and variable features of EDS and EB. Early identification of PLOD3 variants would improve monitoring for comorbidities and may avoid serious adverse ocular and vascular outcomes.
Journal Article