Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Gizdic, B"
Sort by:
Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia
The purpose of this study was to compare the expression and function of NOTCH1 in chronic lymphocytic leukemia (CLL) patients harboring a wild-type (WT) or mutated NOTCH1 gene. NOTCH1 mRNA and surface protein expression levels were independent of the NOTCH1 gene mutational status, consistent with the requirement for NOTCH1 signaling in this leukemia. However, compared with NOTCH1 -WT CLL, mutated cases displayed biochemical and transcriptional evidence of an intense activation of the NOTCH1 pathway. In vivo , expression and activation of NOTCH1 was highest in CLL cells from the lymph nodes as confirmed by immunohistochemistry. In vitro , the NOTCH1 pathway was rapidly downregulated, suggesting that signaling relies upon micro-environmental interactions even in NOTCH1 -mutated cases. Accordingly, co-culture of Jagged1 + (the NOTCH1 ligand) nurse-like cells with autologous CLL cells sustained NOTCH1 activity over time and mediated CLL survival and resistance against pro-apoptotic stimuli, both abrogated when NOTCH1 signaling was pharmacologically switched off. Together, these results show that NOTCH1 mutations have stabilizing effects on the NOTCH1 pathway in CLL. Furthermore, micro-environmental interactions appear critical in activating the NOTCH1 pathway both in WT and mutated patients. Finally, NOTCH1 signals may create conditions that favor drug resistance, thus making NOTCH1 a potential molecular target in CLL.
Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22
Even if NOTCH1 is commonly mutated in chronic lymphocytic leukemia (CLL), its functional impact in the disease remains unclear. Using CRISPR/Cas9-generated Mec-1 cell line models, we show that NOTCH1 regulates growth and homing of CLL cells by dictating expression levels of the tumor suppressor gene DUSP22 . Specifically, NOTCH1 affects the methylation of DUSP22 promoter by modulating a nuclear complex, which tunes the activity of DNA methyltransferase 3A (DNMT3A). These effects are enhanced by PEST-domain mutations, which stabilize the molecule and prolong signaling. CLL patients with a NOTCH1 -mutated clone showed low levels of DUSP22 and active chemotaxis to CCL19. Lastly, in xenograft models, NOTCH1 -mutated cells displayed a unique homing behavior, localizing preferentially to the spleen and brain. These findings connect NOTCH1, DUSP22, and CCL19-driven chemotaxis within a single functional network, suggesting that modulation of the homing process may provide a relevant contribution to the unfavorable prognosis associated with NOTCH1 mutations in CLL.
NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation
In chronic lymphocytic leukemia (CLL), NOTCH1 mutations have been associated with clinical resistance to the anti-CD20 rituximab, although the mechanisms behind this peculiar behavior remain to be clarified. In a wide CLL series ( n =692), we demonstrated that CLL cells from NOTCH1 -mutated cases (87/692) were characterized by lower CD20 expression and lower relative lysis induced by anti-CD20 exposure in vitro . Consistently, CD20 expression by CLL cells was upregulated in vitro by γ-secretase inhibitors or NOTCH1-specific small interfering RNA and the stable transfection of a mutated (c.7541-7542delCT) NOTCH1 intracellular domain (NICD-mut) into CLL-like cells resulted in a strong downregulation of both CD20 protein and transcript. By using these NICD-mut transfectants, we investigated protein interactions of RBPJ, a transcription factor acting either as activator or repressor of NOTCH1 pathway when respectively bound to NICD or histone deacetylases (HDACs). Compared with controls, NICD-mut transfectants had RBPJ preferentially complexed to NICD and showed higher levels of HDACs interacting with the promoter of the CD20 gene. Finally, treatment with the HDAC inhibitor valproic acid upregulated CD20 in both NICD-mut transfectants and primary CLL cells. In conclusion, NOTCH1 mutations are associated with low CD20 levels in CLL and are responsible for a dysregulation of HDAC-mediated epigenetic repression of CD20 expression.
NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutationdriven epigenetic dysregulation
In chronic lymphocytic leukemia (CLL), NOTCH1 1 mutations have been associated with clinical resistance to the anti-CD20 rituximab, although the mechanisms behind this peculiar behavior remain to be clarified. In a wide CLL series (n = 692), we demonstrated that CLL cells from NOTCH1-mutated cases (87/692) were characterized by lower CD20 expression and lower relative lysis induced by anti-CD20 exposure in vitro. Consistently, CD20 expression by CLL cells was upregulated in vitro by Y-secretase inhibitors or NOTCH1 -specific small interfering RNA and the stable transfection of a mutated (c.7541-7542delCT NOTCH1 intracellular domain (NICD-mut) into CLL-like cells resulted in a strong downregulation of both CD20 protein and transcript. By using these NICD-mut transfectants, we investigated protein interactions of RBPJ, a transcription factor acting either as activator or repressor of NOTCH1 pathway when respectively bound to NICD or histone deacetylases (HDACs). Compared with controls, NICD-mut transfectants had RBPJ preferentially complexed to NICD and showed higher levels of HDACs interacting with the promoter of the CD20 gene. Finally, treatment with the HDAC inhibitor valproic acid upregulated CD20 in both NICD-mut transfectants and primary CLL cells. In conclusion, NOTCH1 1 mutations are associated with low CD20 levels in CLL and are responsible for a dysregulation of HDAC-mediated epigenetic repression of CD20 expression. Leukemia (2016) 30, 182-189; doi:10.1038/leu.2015.182