Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
136 result(s) for "Gizzi, L."
Sort by:
Generation of neutral and high-density electron–positron pair plasmas in the laboratory
Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments. Electron–positron pair plasma—a state of matter with a complete symmetry between negatively and positively charged particles—are found in many astrophysical object. Here, the authors use high-power laser to create an ion-free electron–positron plasma in the laboratory.
Investigation on the origin of hot electrons in laser plasma interaction at shock ignition intensities
Shock Ignition is a two-step scheme to reach Inertial Confinement Fusion, where the precompressed fuel capsule is ignited by a strong shock driven by a laser pulse at an intensity in the order of 10 16 W/cm 2 . In this report we describe the results of an experiment carried out at PALS laser facility designed to investigate the origin of hot electrons in laser-plasma interaction at intensities and plasma temperatures expected for Shock Ignition. A detailed time- and spectrally-resolved characterization of Stimulated Raman Scattering and Two Plasmon Decay instabilities, as well as of the generated hot electrons, suggest that Stimulated Raman Scattering is the dominant source of hot electrons via the damping of daughter plasma waves. The temperature dependence of laser plasma instabilities was also investigated, enabled by the use of different ablator materials, suggesting that Two Plasmon Decay is damped at earlier times for higher plasma temperatures, accompanied by an earlier ignition of SRS. The identification of the predominant hot electron source and the effect of plasma temperature on laser plasma interaction, here investigated, are extremely useful for developing the mitigation strategies for reducing the impact of hot electrons on the fuel ignition.
Inertial confinement fusion ignition achieved at the National Ignition Facility – an editorial
On behalf of all at High Power Laser Science and Engineering we would like to congratulate the team at Lawrence Livermore National Laboratory (LLNL) on demonstrating fusion ignition at the National Ignition Facility. This major scientific achievement was realized on the 5 December 2022 at the LLNL and announced at a press briefing on the 13 December 2022 by the United States Department of Energy’s National Nuclear Security Administration. This was a historic milestone and the culmination of decades of effort.
Optical and spectroscopic study of a supersonic flowing helium plasma: energy transport in the afterglow
Flowing plasma jets are increasingly investigated and used for surface treatments, including biological matter, and as soft ionization sources for mass spectrometry. They have the characteristic capability to transport energy from the plasma excitation region to the flowing afterglow, and therefore to a distant application surface, in a controlled manner. The ability to transport and deposit energy into a specimen is related to the actual energy transport mechanism. In case of a flowing helium plasma, the energy in the flowing afterglow may be carried by metastable helium atoms and long-lived helium dimer ions. In this work a systematic investigation of the optical and spectroscopic characteristics of a supersonic flowing helium plasma in vacuum and its afterglow as function of the helium gas density is presented. The experimental data are compared with numerical modeling of the plasma excitation and helium dimer ion formation supported by a Computational Fluid Dynamic simulation of the helium jet. The results indicate that the plasma afterglow is effectively due to helium dimer ions recombination via a three-body reaction.
Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets
Relativistic laser interaction with micro- and nano-scale surface structures enhances energy transfer to solid targets and yields matter in extreme conditions. We report on the comparative study of laser-target interaction mechanisms with wire-structures of different size, revealing a transition from a coherent particle heating to a stochastic plasma heating regime which occurs when migrating from micro-scale to nano-scale wires. Experiments and kinetic simulations show that large gaps between the wires favour the generation of high-energy electrons via laser acceleration into the channels while gaps smaller than the amplitude of electron quivering in the laser field lead to less energetic electrons and multi-keV plasma generation, in agreement with previously published experiments. Plasma filling of nano-sized gaps due to picosecond pedestal typical of ultrashort pulses strongly affects the interaction with this class of targets reducing the laser penetration depth to approximately one hundred nanometers. The two heating regimes appear potentially suitable for laser-driven ion/electron acceleration schemes and warm dense matter investigation respectively.
Multibeam laser–plasma interaction at the Gekko XII laser facility in conditions relevant for direct-drive inertial confinement fusion
Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion. The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately $3\\times {10}^{15}$ W/cm2. Experimental data suggest that high-energy electrons, with temperatures of 20–50 keV and conversion efficiencies of $\\eta <1\\%$ , were mainly produced by the damping of electron plasma waves driven by two-plasmon decay (TPD). Stimulated Raman scattering (SRS) is observed in a near-threshold growth regime, producing a reflectivity of approximately $0.01\\%$ , and is well described by an analytical model accounting for the convective growth in independent speckles. The experiment reveals that both TPD and SRS are collectively driven by multiple beams, resulting in a more vigorous growth than that driven by single-beam laser intensity.
An evaluation of sustainability and societal impact of high-power laser and fusion technologies: a case for a new European research infrastructure
Fusion energy research is delivering impressive new results emerging from different infrastructures and industrial devices evolving rapidly from ideas to proof-of-principle demonstration and aiming at the conceptual design of reactors for the production of electricity. A major milestone has recently been announced in laser fusion by the Lawrence Livermore National Laboratory and is giving new thrust to laser-fusion energy research worldwide. Here we discuss how these circumstances strongly suggest the need for a European intermediate-energy facility dedicated to the physics and technology of laser-fusion ignition, the physics of fusion materials and advanced technologies for high-repetition-rate, high-average-power broadband lasers. We believe that the participation of the broader scientific community and the increased engagement of industry, in partnership with research and academic institutions, make most timely the construction of this infrastructure of extreme scientific attractiveness.
An investigation of the emittance of escaping fast electron beams from planar and nanowire targets
Fast electron generation and transport in high-intensity laser–solid interactions induces X-ray emission and drives ion acceleration. Effective production of these sources hinges on an efficient laser absorption into the fast electron population and control of divergence as the beam propagates through the target. Nanowire targets can be employed to increase the laser absorption, but it is not yet clear how the fast electron beam properties are modified. Here we present novel measurements of the emittance of the exiting fast electron beam from irradiated solid planar and nanowire targets via a pepper-pot diagnostic. The measurements indicate a greater fast electron emittance is obtained from nanowire targets. Two-dimensional particle-in-cell simulations support this conclusion, revealing beam defocusing at the wire–substrate boundary, a higher fast electron temperature and transverse oscillatory motion around the wires.
Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
Laser–plasma interaction (LPI) at intensities$10^{15}{-}10^{16}~\\text{W}\\cdot \\text{cm}^{-2}$is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity${\\sim}1.2\\times 10^{16}~\\text{W}\\cdot \\text{cm}^{-2}$with a${\\sim}100~\\unicode[STIX]{x03BC}\\text{m}$scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (${\\sim}4~\\text{keV}$) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.
Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions
The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50- μ m thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.