Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
35
result(s) for
"Gkatzelis, Georgios I."
Sort by:
Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility
by
Wiedensohler, Alfred
,
Wang, Yu
,
Gkatzelis, Georgios I.
in
Aerosols
,
Air pollution
,
Air pollution control
2020
As has been the case in North America and western Europe, the SO2 emissions have substantially reduced in the North China Plain (NCP) in recent years. Differential rates of reduction in SO2 and NOx concentrations result in the frequent occurrence of particulate matter pollution dominated by nitrate (pNO3-) over the NCP. In this study, we observed a polluted episode with the particulate nitrate mass fraction in nonrefractory PM1 (NR-PM1) being up to 44 % during wintertime in Beijing. Based on this typical pNO3--dominated haze event, the linkage between aerosol water uptake and pNO3- enhancement, further impacting on visibility degradation, has been investigated based on field observations and theoretical calculations. During haze development, as ambient relative humidity (RH) increased from ∼10 % to 70 %, the aerosol particle liquid water increased from ∼1 µg m−3 at the beginning to ∼75 µg m−3 in the fully developed haze period. The aerosol liquid water further increased the aerosol surface area and volume, enhancing the condensational loss of N2O5 over particles. From the beginning to the fully developed haze, the condensational loss of N2O5 increased by a factor of 20 when only considering aerosol surface area and volume of dry particles, while increasing by a factor of 25 when considering extra surface area and volume due to water uptake. Furthermore, aerosol liquid water favored the thermodynamic equilibrium of HNO3 in the particle phase under the supersaturated HNO3 and NH3 in the atmosphere. All the above results demonstrated that pNO3- is enhanced by aerosol water uptake with elevated ambient RH during haze development, in turn facilitating the aerosol take-up of water due to the hygroscopicity of particulate nitrate salt. Such mutual promotion between aerosol particle liquid water and particulate nitrate enhancement can rapidly degrade air quality and halve visibility within 1 d. Reduction of nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is essential in mitigating severe haze events in the NCP.
Journal Article
Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications
by
McDonald, Brian C.
,
Aikin, Kenneth
,
Gilman, Jessica B.
in
Carbon
,
Chemical compounds
,
Cleaning
2021
The emissions of volatile organic compounds (VOCs) from volatile chemical products (VCPs) – specifically personal care products, cleaning agents, coatings, adhesives, and pesticides – are emerging as the largest source of petroleum-derived organic carbon in US cities. Previous work has shown that the ambient concentration of markers for most VCP categories correlates strongly with population density, except for VOCs predominantly originating from solvent- and water-borne coatings (e.g., parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as construction activity. In this work, the headspace of a variety of coating products was analyzed using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation front end to identify composition differences for various coating types (e.g., paints, primers, sealers, and stains). Evaporation experiments of several products showed high initial VOC emission rates, and for the length of these experiments, the majority of the VOC mass was emitted during the first few hours following application. The percentage of mass emitted as measured VOCs (<1 % to 83 %) mirrored the VOC content reported by the manufacturer (<5 to 550 g L−1). Ambient and laboratory measurements, usage trends, and ingredients compiled from architectural coatings surveys show that both PCBTF and Texanol account for ∼10 % of the total VOC ingredient sales and, therefore, can be useful tracers for solvent- and water-borne coatings.
Journal Article
Wintertime photochemistry in Beijing: observations of ROx radical concentrations in the North China Plain during the BEST-ONE campaign
by
Ma, Xuefei
,
Wang, Haichao
,
Broch, Sebastian
in
Air pollution
,
Atmospheric chemistry
,
Capacity
2018
The first wintertime in situ measurements of hydroxyl (OH), hydroperoxy (HO2) and organic peroxy (RO2) radicals (ROx=OH+HO2+RO2) in combination with observations of total reactivity of OH radicals, kOH in Beijing are presented. The field campaign “Beijing winter finE particle STudy – Oxidation, Nucleation and light Extinctions” (BEST-ONE) was conducted at the suburban site Huairou near Beijing from January to March 2016. It aimed to understand oxidative capacity during wintertime and to elucidate the secondary pollutants' formation mechanism in the North China Plain (NCP). OH radical concentrations at noontime ranged from 2.4×106cm-3 in severely polluted air (kOH∼27s-1) to 3.6×106cm-3 in relatively clean air (kOH∼5s-1). These values are nearly 2-fold larger than OH concentrations observed in previous winter campaigns in Birmingham, Tokyo, and New York City. During this campaign, the total primary production rate of ROx radicals was dominated by the photolysis of nitrous acid accounting for 46 % of the identified primary production pathways for ROx radicals. Other important radical sources were alkene ozonolysis (28 %) and photolysis of oxygenated organic compounds (24 %). A box model was used to simulate the OH, HO2 and RO2 concentrations based on the observations of their long-lived precursors. The model was capable of reproducing the observed diurnal variation of the OH and peroxy radicals during clean days with a factor of 1.5. However, it largely underestimated HO2 andRO2 concentrations by factors up to 5 during pollution episodes. The HO2 and RO2 observed-to-modeled ratios increased with increasing NO concentrations, indicating a deficit in our understanding of the gas-phase chemistry in the high NOx regime. The OH concentrations observed in the presence of large OH reactivities indicate that atmospheric trace gas oxidation by photochemical processes can be highly effective even during wintertime, thereby facilitating the vigorous formation of secondary pollutants.
Journal Article
Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR
by
Yu, Zhujun
,
Reimer, David
,
Gkatzelis, Georgios I.
in
Aldehydes
,
Anthropogenic factors
,
Atmospheric conditions
2020
Theoretical, laboratory, and chamber studies have shown fast regeneration of the hydroxyl radical (OH) in the photochemistry of isoprene, largely due to unimolecular reactions which were previously thought not to be important under atmospheric conditions. Based on early field measurements, nearly complete regeneration was hypothesized for a wide range of tropospheric conditions, including areas such as the rainforest where slow regeneration of OH radicals is expected due to low concentrations of nitric oxide (NO). In this work the OH regeneration in isoprene oxidation is directly quantified for the first time through experiments covering a wide range of atmospherically relevant NO levels (between 0.15 and 2 ppbv – parts per billion by volume) in the atmospheric simulation chamber SAPHIR. These conditions cover remote areas partially influenced by anthropogenic NO emissions, giving a regeneration efficiency of OH close to 1, and areas like the Amazonian rainforest with very low NO, resulting in a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3 higher than explainable in the absence of unimolecular reactions. The measured radical concentrations were compared to model calculations, and the best agreement was observed when at least 50 % of the total loss of isoprene peroxy radicals conformers (weighted by their abundance) occurs via isomerization reactions for NO lower than 0.2 ppbv. For these levels of NO, up to 50 % of the OH radicals are regenerated from the products of the 1,6 α-hydroxy-hydrogen shift (1,6-H shift) of Z-δ-RO2 radicals through the photolysis of an unsaturated hydroperoxy aldehyde (HPALD) and/or through the fast aldehydic hydrogen shift (rate constant ∼10 s−1 at 300 K) in di-hydroperoxy carbonyl peroxy radicals (di-HPCARP-RO2), depending on their relative yield. The agreement between all measured and modelled trace gases (hydroxyl, hydroperoxy, and organic peroxy radicals, carbon monoxide, and the sum of methyl vinyl ketone, methacrolein, and hydroxyl hydroperoxides) is nearly independent of the adopted yield of HPALD and di-HPCARP-RO2 as both degrade relatively fast (<1 h), forming the OH radical and CO among other products. Taking into consideration this and earlier isoprene studies, considerable uncertainties remain on the distribution of oxygenated products, which affect radical levels and organic aerosol downwind of unpolluted isoprene-dominated regions.
Journal Article
The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities
by
Mihalopoulos, Nikolaos
,
Gkatzelis, Georgios I.
,
Pikridas, Michael
in
Aerosols
,
Air pollution
,
Apportionment
2017
The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns, one conducted in 2013 and the other in 2012. A major goal of this study is to quantify the sources of organic aerosol (OA) and especially residential wood burning, which has dramatically increased due to the Greek financial crisis. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at both sites. PM with diameter less than 1 µm (PM1) consisted mainly of organics (60–75 %), black carbon (5–20 %), and inorganic salts (around 20 %) in both Patras and Athens. In Patras, during evening hours, PM1 concentrations were as high as 100 µg m−3, of which 85 % was OA. In Athens, the maximum hourly value observed during nighttime was 140 µg m−3, of which 120 µg m−3 was OA. Forty to 60 % of the average OA was due to biomass burning for both cities, while the remaining mass originated from traffic (12–17 %), cooking (12–16 %), and long-range transport (18–24 %). The contribution of residential wood burning was even higher (80–90 %) during the nighttime peak concentration periods, and less than 10 % during daytime. Cooking OA contributed up to 75 % during mealtime hours in Patras, while traffic-related OA was responsible for 60–70 % of the OA during the morning rush hour.
Journal Article
Incorporation of lumped IVOC emissions into the ORACLE model (V1.1): a multi-product framework for assessing global SOA formation from internal combustion engines
by
Tsimpidi, Alexandra P
,
Karydis, Vlassis A
,
Gkatzelis, Georgios I
in
Aerosols
,
Air pollution
,
Anthropogenic factors
2025
Secondary organic aerosol (SOA) is a major component of particulate matter but is often underpredicted in chemistry climate models. Recent advances in measuring and resolving the chemically complex structure of intermediate volatile organic compounds (IVOC) have shown that IVOCs, despite their high SOA yields, have long been underrepresented in models. These compounds are key precursors of SOA from emissions in the road transport sector and significantly influence SOA formation. Understanding vehicle emissions, their chemistry, and their SOA-forming potential is essential for accurately estimating their contributions to atmospheric SOA and global organic aerosol loads. To improve this understanding, we have updated the organic module ORACLE in the global chemistry climate model EMAC. The existing IVOC representation was based on scaled organic carbon (OC) emissions and a highly parameterized volatility basis set (VBS) which underestimated global IVOC emissions, particularly those from gasoline combustion, and oversimplified their chemistry. Here, we replaced this approach with a lumped species framework, in which experimental data for gasoline and diesel emissions were grouped into seven lumped species based on their chemical properties and hydroxylation potentials. These species were linked to adjusted emission inventories for regional diesel and gasoline consumption. A 10 year simulation with the updated ORACLE-IVOC model resulted in significant changes. The global atmospheric burden of road transport IVOC-derived SOA (SOA-iv) increased by 1 order of magnitude, from 0.014 to 0.13 Tg. The composition of road transport organic aerosol (OA) shifted, with SOA-iv contributing 2.5 to 13 times more than the primary organic aerosol (POA) and SOA derived from semi-volatile organic compounds combined. In the results using the previous model, this ratio was between 0.4 and 1.1. The geographical distribution of OA also changed. Regions rich in gasoline relative to diesel emissions experienced higher concentration increases, and remote areas experienced elevated concentrations due to more efficient long-range transport of the new lumped IVOC species. Overall, these changes led to a significant increase in the contribution of road transport to total anthropogenic SOA-iv from an average value of 3 % to 35 %.
Journal Article
Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol
2021
We deployed an extractive electrospray ionization time-of-flight mass spectrometer (EESI-MS) for airborne measurements of biomass burning aerosol during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) study onboard the NASA DC-8 research aircraft. Through optimization of the electrospray working solution, active control of the electrospray region pressure, and precise control of electrospray capillary position, we achieved 1 Hz quantitative measurements of aerosol nitrocatechol and levoglucosan concentrations up to pressure altitudes of 7 km. The EESI-MS response to levoglucosan and nitrocatechol was calibrated for each flight, with flight-to-flight calibration variability of 60 % (1σ). Laboratory measurements showed no aerosol size dependence in EESI-MS sensitivity below particle geometric diameters of 400 nm, covering 82 % of accumulation-mode aerosol mass during FIREX-AQ. We also present a first in-field intercomparison of EESI-MS with a chemical analysis of aerosol online proton-transfer-reaction mass spectrometer (CHARON PTR-MS) and a high-resolution Aerodyne aerosol mass spectrometer (AMS). EESI-MS and CHARON PTR-MS levoglucosan concentrations were well correlated, with a regression slope of 0.94 (R2=0.77). AMS levoglucosan-equivalent concentrations and EESI-MS levoglucosan showed a greater difference, with a regression slope of 1.36 (R2=0.96), likely indicating the contribution of other compounds to the AMS levoglucosan-equivalent measurement. The total EESI-MS signal showed correlation (R2=0.9) with total organic aerosol measured by AMS, and the EESI-MS bulk organic aerosol sensitivity was 60 % of the sensitivity to levoglucosan standards.
Journal Article
Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA
by
Gkatzelis, Georgios I.
,
Hohaus, Thorsten
,
Müller, Markus
in
Accuracy
,
Aerosol sampling
,
Aerosols
2018
An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA) formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). Three different aerosol sampling techniques – the aerosol collection module (ACM), the chemical analysis of aerosol online (CHARON) and the collection thermal-desorption unit (TD) were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs) to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS). The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene–limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine). The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C) obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or detection. The differences in total mass recovery and O : C between the three instruments resulted predominantly from differences in the field strength (E∕N) in the drift tube reaction ionization chambers of the PTR-ToF-MS instruments and from dissimilarities in the collection/desorption of aerosols. Laboratory case studies showed that PTR-ToF-MS E∕N conditions influenced fragmentation which resulted in water and further neutral fragment losses of the detected molecules. Since ACM and TD were operated in higher E∕N than CHARON, this resulted in higher fragmentation, thus affecting primarily the detected oxygen and carbon content and therefore also the mass recovery. Overall, these techniques have been shown to provide valuable insight on the chemical characteristics of BSOA and can address unknown thermodynamic properties such as partitioning coefficient values and volatility patterns down to a compound-specific level.
Journal Article
Volatile chemical product emissions enhance ozone and modulate urban chemistry
by
Gkatzelis, Georgios I.
,
Aikin, Kenneth C.
,
Li, Meng
in
"Earth, Atmospheric, and Planetary Sciences"
,
Air Pollutants - analysis
,
Air Pollutants - chemistry
2021
Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg · d−1 · km−2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.
Journal Article
The global impacts of COVID-19 lockdowns on urban air pollution
by
Eskes Henk
,
McDonald, Brian C
,
Kiendler-Scharr Astrid
in
Air pollution
,
Air pollution measurements
,
Air quality
2021
The coronavirus-19 (COVID-19) pandemic led to government interventions to limit the spread of the disease which are unprecedented in recent history; for example, stay at home orders led to sudden decreases in atmospheric emissions from the transportation sector. In this review article, the current understanding of the influence of emission reductions on atmospheric pollutant concentrations and air quality is summarized for nitrogen dioxide (NO2), particulate matter (PM2.5), ozone (O3), ammonia, sulfur dioxide, black carbon, volatile organic compounds, and carbon monoxide (CO). In the first 7 months following the onset of the pandemic, more than 200 papers were accepted by peer-reviewed journals utilizing observations from ground-based and satellite instruments. Only about one-third of this literature incorporates a specific method for meteorological correction or normalization for comparing data from the lockdown period with prior reference observations despite the importance of doing so on the interpretation of results. We use the government stringency index (SI) as an indicator for the severity of lockdown measures and show how key air pollutants change as the SI increases. The observed decrease of NO2 with increasing SI is in general agreement with emission inventories that account for the lockdown. Other compounds such as O3, PM2.5, and CO are also broadly covered. Due to the importance of atmospheric chemistry on O3 and PM2.5 concentrations, their responses may not be linear with respect to primary pollutants. At most sites, we found O3 increased, whereas PM2.5 decreased slightly, with increasing SI. Changes of other compounds are found to be understudied. We highlight future research needs for utilizing the emerging data sets as a preview of a future state of the atmosphere in a world with targeted permanent reductions of emissions. Finally, we emphasize the need to account for the effects of meteorology, emission trends, and atmospheric chemistry when determining the lockdown effects on pollutant concentrations.
Journal Article