Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Country Of Publication
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
    • Location
638 result(s) for "Glen, Daniel"
Sort by:
Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex
The human brain coordinates a wide variety of motor activities. On a large scale, the cortical motor system is topographically organized such that neighboring body parts are represented by neighboring brain areas. This homunculus-like somatotopic organization along the central sulcus has been observed using neuroimaging for large body parts such as the face, hands and feet. However, on a finer scale, invasive electrical stimulation studies show deviations from this somatotopic organization that suggest an organizing principle based on motor actions rather than body part moved. It has not been clear how the action-map organization principle of the motor cortex in the mesoscopic (sub-millimeter) regime integrates into a body map organization principle on a macroscopic scale (cm). Here we developed and applied advanced mesoscopic (sub-millimeter) fMRI and analysis methodology to non-invasively investigate the functional organization topography across columnar and laminar structures in humans. Compared to previous methods, in this study, we could capture locally specific blood volume changes across entire brain regions along the cortical curvature. We find that individual fingers have multiple mirrored representations in the primary motor cortex depending on the movements they are involved in. We find that individual digits have cortical representations up to 3 ​mm apart from each other arranged in a column-like fashion. These representations are differentially engaged depending on whether the digits’ muscles are used for different motor actions such as flexion movements, like grasping a ball or retraction movements like releasing a ball. This research provides a starting point for non-invasive investigation of mesoscale topography across layers and columns of the human cortex and bridges the gap between invasive electrophysiological investigations and large coverage non-invasive neuroimaging. [Display omitted] •A sub-millimeter fMRI method is developed to image neural microcircuitry in humans.•The method can capture large FOVs with thin slices for ‛columnar’ and ‛laminar’ mapping.•An analysis pipeline is developed to investigate topographical representations that have only been visible in animals so far.•Novel findings include a mirrored finger representation in the human motor cortex.
FMRI Clustering in AFNI: False-Positive Rates Redux
Recent reports of inflated false-positive rates (FPRs) in FMRI group analysis tools by Eklund and associates in 2016 have become a large topic within (and outside) neuroimaging. They concluded that existing parametric methods for determining statistically significant clusters had greatly inflated FPRs (“up to 70%,” mainly due to the faulty assumption that the noise spatial autocorrelation function is Gaussian shaped and stationary), calling into question potentially “countless” previous results; in contrast, nonparametric methods, such as their approach, accurately reflected nominal 5% FPRs. They also stated that AFNI showed “particularly high” FPRs compared to other software, largely due to a bug in 3dClustSim. We comment on these points using their own results and figures and by repeating some of their simulations. Briefly, while parametric methods show some FPR inflation in those tests (and assumptions of Gaussian-shaped spatial smoothness also appear to be generally incorrect), their emphasis on reporting the single worst result from thousands of simulation cases greatly exaggerated the scale of the problem. Importantly, FPR statistics depends on “task” paradigm and voxelwise p value threshold; as such, we show how results of their study provide useful suggestions for FMRI study design and analysis, rather than simply a catastrophic downgrading of the field's earlier results. Regarding AFNI (which we maintain), 3dClustSim's bug effect was greatly overstated—their own results show that AFNI results were not “particularly” worse than others. We describe further updates in AFNI for characterizing spatial smoothness more appropriately (greatly reducing FPRs, although some remain >5%); in addition, we outline two newly implemented permutation/randomization-based approaches producing FPRs clustered much more tightly about 5% for voxelwise p ≤ 0.01.
LayNii: A software suite for layer-fMRI
•A new software toolbox is introduced for layer-specific functional MRI: LayNii.•LayNii is a suite of command-line executable C++ programs for Linux, Windows, and macOS.•LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints.•LayNii performs layerification in the native voxel space of functional data.•LayNii performs layer-smoothing, GE-BOLD deveining, QA, and VASO analysis. High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain ‘layerification’ and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data. [Display omitted]
Quality control practices in FMRI analysis: Philosophy, methods and examples using AFNI
Quality control (QC) is a necessary, but often an under-appreciated, part of FMRI processing. Here we describe procedures for performing QC on acquired or publicly available FMRI datasets using the widely used AFNI software package. This work is part of the Research Topic, “Demonstrating Quality Control (QC) Procedures in fMRI.” We used a sequential, hierarchical approach that contained the following major stages: (1) GTKYD (getting to know your data, esp. its basic acquisition properties), (2) APQUANT (examining quantifiable measures, with thresholds), (3) APQUAL (viewing qualitative images, graphs, and other information in systematic HTML reports) and (4) GUI (checking features interactively with a graphical user interface); and for task data, and (5) STIM (checking stimulus event timing statistics). We describe how these are complementary and reinforce each other to help researchers stay close to their data. We processed and evaluated the provided, publicly available resting state data collections (7 groups, 139 total subjects) and task-based data collection (1 group, 30 subjects). As specified within the Topic guidelines, each subject’s dataset was placed into one of three categories: Include, exclude or uncertain. The main focus of this paper, however, is the detailed description of QC procedures: How to understand the contents of an FMRI dataset, to check its contents for appropriateness, to verify processing steps, and to examine potential quality issues. Scripts for the processing and analysis are freely available.
Untangling the relatedness among correlations, part I: Nonparametric approaches to inter-subject correlation analysis at the group level
FMRI data acquisition under naturalistic and continuous stimuli (e.g., watching a video or listening to music) has become popular recently due to the fact that it entails less manipulation and more realistic/complex contexts involved in the task, compared to the conventional task-based experimental designs. The synchronization or response similarities among subjects are typically measured through inter-subject correlation (ISC) between any pair of subjects. At the group level, summarizing the collection of ISC values is complicated by their intercorrelations, which necessarily lead to the violation of independence assumed in typical parametric approaches such as Student's t-test. Nonparametric methods, such as bootstrapping and permutation testing, have previously been adopted for testing purposes by resampling the time series of each subject, but the quantitative validity of these specific approaches in terms of controllability of false positive rate (FPR) has never been explored before. Here we survey the methods of ISC group analysis that have been employed in the literature, and discuss the issues involved in those methods. We then propose less computationally intensive nonparametric methods that can be performed at the group level (for both one- and two-sample analyses), as compared to the popular method of circularly shifting the EPI time series at the individual level. As part of the new approaches, subject-wise (SW) resampling is adopted instead of element-wise (EW) resampling, so that exchangeability and independence assumptions are satisfied, and the patterned correlation structure among the ISC values can be more accurately captured. We examine the FPR controllability and power achievement of all the methods through simulations, as well as their performance when applied to a real experimental dataset. •Inter-subject correlation shows similarities of response to naturalistic conditions.•A patterned matrix is formulated to characterize the relationship among ISC values.•Previous methods of ISC group analysis are problematic in controlling for FPR.•Subject-wise permutation testing is ideal for comparing two groups of ISC.•Bootstrapping is the best nonparametric method to make ISC inferences for one group.
A comprehensive macaque fMRI pipeline and hierarchical atlas
•The NMT v2, a stereotaxically aligned symmetric macaque template, is introduced.•A new atlas (CHARM), defined on NMT v2, parcellates the cortex at six spatial scales.•AFNI's @animal_warper aligns and maps data between monkey anatomicals and templates.•AFNI's afni_proc.py facilitates monkey fMRI analysis with automated scripting and QC.•Demos of macaque task and resting state fMRI analysis with these tools are provided. Functional neuroimaging research in the non-human primate (NHP) has been advancing at a remarkable rate. The increase in available data establishes a need for robust analysis pipelines designed for NHP neuroimaging and accompanying template spaces to standardize the localization of neuroimaging results. Our group recently developed the NIMH Macaque Template (NMT), a high-resolution population average anatomical template and associated neuroimaging resources, providing researchers with a standard space for macaque neuroimaging . Here, we release NMT v2, which includes both symmetric and asymmetric templates in stereotaxic orientation, with improvements in spatial contrast, processing efficiency, and segmentation. We also introduce the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM), a hierarchical parcellation of the macaque cerebral cortex with varying degrees of detail. These tools have been integrated into the neuroimaging analysis software AFNI to provide a comprehensive and robust pipeline for fMRI processing, visualization and analysis of NHP data. AFNI's new @animal_warper program can be used to efficiently align anatomical scans to the NMT v2 space, and afni_proc.py integrates these results with full fMRI processing using macaque-specific parameters: from motion correction through regression modeling. Taken together, the NMT v2 and AFNI represent an all-in-one package for macaque functional neuroimaging analysis, as demonstrated with available demos for both task and resting state fMRI.
Marmoset Brain Mapping V3: Population multi-modal standard volumetric and surface-based templates
The standard anatomical brain template provides a common space and coordinate system for visualizing and analyzing neuroimaging data from large cohorts of subjects. Previous templates and atlases for the common marmoset brain were either based on data from a single individual or lacked essential functionalities for neuroimaging analysis. Here, we present new population-based in-vivo standard templates and tools derived from multi-modal data of 27 marmosets, including multiple types of T1w and T2w contrast images, DTI contrasts, and large field-of-view MRI and CT images. We performed multi-atlas labeling of anatomical structures on the new templates and constructed highly accurate tissue-type segmentation maps to facilitate volumetric studies. We built fully featured brain surfaces and cortical flat maps to facilitate 3D visualization and surface-based analyses, which are compatible with most surface analyzing tools, including FreeSurfer, AFNI/SUMA, and the Connectome Workbench. Analysis of the MRI and CT datasets revealed significant variations in brain shapes, sizes, and regional volumes of brain structures, highlighting substantial individual variabilities in the marmoset population. Thus, our population-based template and associated tools provide a versatile analysis platform and standard coordinate system for a wide range of MRI and connectome studies of common marmosets. These new template tools comprise version 3 of our Marmoset Brain Mapping Project and are publicly available via marmosetbrainmapping.org/v3.html.
A digital 3D atlas of the marmoset brain based on multi-modal MRI
The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. [Display omitted] •MRI-based 3D digital atlas of the marmoset brain for MRI and connectome studies.•Marmoset brain templates created from multi-modal high-resolution 3D MRI.•Anatomical regions manually delineated and labeled directly on MRI dataset.•Finer parcellation of the cortex obtained based on structural connectivity profiles.•Fully-featured atlas functions and integration with the Paxinos atlas.