Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
65 result(s) for "Glownia, James M."
Sort by:
Ultrafast disordering of vanadium dimers in photoexcited VO2
Snapshots of a phase transitionTime-resolved x-ray scattering can be used to investigate the dynamics of materials during the switch from one structural phase to another. So far, methods provide an ensemble average and may miss crucial aspects of the detailed mechanisms at play. Wall et al. used a total-scattering technique to probe the dynamics of the ultrafast insulator-to-metal transition of vanadium dioxide (VO2) (see the Perspective by Cavalleri). Femtosecond x-ray pulses provide access to the time- and momentum-resolved dynamics of the structural transition. Their results show that the photoinduced transition is of the order-disorder type, driven by an ultrafast change in the lattice potential that suddenly unlocks the vanadium atoms and yields large-amplitude uncorrelated motions, rather than occurring through a coherent displacive mechanism.Science, this issue p. 572; see also p. 525Many ultrafast solid phase transitions are treated as chemical reactions that transform the structures between two different unit cells along a reaction coordinate, but this neglects the role of disorder. Although ultrafast diffraction provides insights into atomic dynamics during such transformations, diffraction alone probes an averaged unit cell and is less sensitive to randomness in the transition pathway. Using total scattering of femtosecond x-ray pulses, we show that atomic disordering in photoexcited vanadium dioxide (VO2) is central to the transition mechanism and that, after photoexcitation, the system explores a large volume of phase space on a time scale comparable to that of a single phonon oscillation. These results overturn the current understanding of an archetypal ultrafast phase transition and provide new microscopic insights into rapid evolution toward equilibrium in photoexcited matter.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy) 3 ] 2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules. Ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remain challenging to describe since electronic/nuclear configurations are coupled. Here the authors use time-resolved X-ray absorption spectroscopy to probe the light-induced spin-state trapping dynamics of [Fe(bpy) 3 ] 2+ beyond the Born-Oppenheimer approximation.
Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy
The multifunctional protein cytochrome c (cyt c) plays key roles in electron transport and apoptosis, switching function by modulating bonding between a heme iron and the sulfur in a methionine residue. This Fe–S(Met) bond is too weak to persist in the absence of protein constraints. We ruptured the bond in ferrous cyt c using an optical laser pulse and monitored the bond reformation within the protein active site using ultrafast x-ray pulses from an x-ray free-electron laser, determining that the Fe–S(Met) bond enthalpy is ~4 kcal/mol stronger than in the absence of protein constraints. The 4 kcal/mol is comparable with calculations of stabilization effects in other systems, demonstrating how biological systems use an entatic state for modest yet accessible energetics to modulate chemical function.
Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core x-ray emission spectroscopy
Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kβ main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kβ main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range. Reliably identifying transient intermediates is crucial to elucidate chemical reaction mechanisms. Here, the authors use femtosecond Fe Kβ main line and valence-to-core x-ray emission spectroscopy to characterize a short-lived intermediate of the aqueous ferricyanide photo-aquation reaction.
Characterizing Multiphoton Excitation Using Time-Resolved X-ray Scattering
Molecular iodine is photoexcited by a strong 800-nm laser driving several channels of multiphoton excitation. The motion following photoexcitation is probed using time-resolved x-ray scattering, which produces a scattering mapS(Q,τ). Temporal Fourier-transform methods are employed to obtain a frequency-resolved x-ray-scattering signalS˜(Q,ω). Taken together,S(Q,τ)andS˜(Q,ω)separate different modes of motion so that mode-specific nuclear oscillatory positions, oscillation amplitudes, directions of motion, and times may be measured accurately. Molecular dissociations likewise have a distinct signature, which may be used to identify both velocities and dissociation time shifts and also can reveal laser-induced couplings among the molecular potentials.
The time‐resolved atomic, molecular and optical science instrument at the Linac Coherent Light Source
The newly constructed time‐resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per‐pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X‐ray free‐electron laser with the new variable‐gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X‐ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong‐field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub‐micrometer X‐ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub‐femtosecond soft X‐ray pulse generation program. The newly constructed time‐resolved atomic, molecular and optical science instrument (TMO), configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per‐pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity, is described.
Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser
The quantum-mechanical motion of electrons in molecules and solids occurs on the sub-femtosecond timescale. Consequently, the study of ultrafast electronic phenomena requires the generation of laser pulses shorter than 1 fs and of sufficient intensity to interact with their target with high probability. Probing these dynamics with atomic-site specificity requires the extension of sub-femtosecond pulses to the soft X-ray spectral region. Here, we report the generation of isolated soft X-ray attosecond pulses with an X-ray free-electron laser. Our source has a pulse energy that is millions of times larger than any other source of isolated attosecond pulses in the soft X-ray spectral region, with a peak power exceeding 100 GW. This unique combination of high intensity, high photon energy and short pulse duration enables the investigation of electron dynamics with X-ray nonlinear spectroscopy and single-particle imaging, unlocking a path towards a new era of attosecond science.
Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue
Photoinduced charge-transfer is an important process in nature and technology and is responsible for the emergence of exotic functionalities, such as magnetic order for cyanide-bridged bimetallic coordination networks. Despite its broad interest and intensive developments in chemistry and material sciences, the atomic-scale description of the initial photoinduced process, which couples intermetallic charge-transfer and spin transition, has been debated for decades; it has been beyond reach due to its extreme speed. Here we study this process in a prototype cyanide-bridged CoFe system by femtosecond X-ray and optical absorption spectroscopies, enabling the disentanglement of ultrafast electronic and structural dynamics. Our results demonstrate that it is the spin transition that occurs first on the Co site within ~50 fs, and it is this that drives the subsequent Fe-to-Co charge-transfer within ~200 fs. This study represents a step towards understanding and controlling charge-transfer-based functions using light.Cyanide-bridged CoFe coordination networks exhibit photomagnetism because of coupled charge-transfer and spin transition. Now, femtosecond X-ray and optical absorption spectroscopies have enabled the electronic and structural dynamics of this light-induced process to be disentangled and show that it is the spin transition on the cobalt atom, occurring within ~50 fs, that induces the Fe-to-Co charge-transfer within ~200 fs.
Structure and ultrafast dynamics of tri-nuclear Ag-/Tl–Pt2POP4 complexes in solution
The energetics and dynamics of ion assembly in solution has broad influence in nanomaterials and inorganic synthesis. To investigate the fundamental processes involved, we present a time-resolved x-ray solution scattering (TR-XSS) study of the trinuclear silver and thallium complexes of the diplatinum ion PtPOP [Pt2(H2P2O5) 44−] in aqueous solution. These complexes, their structural properties, and their electronic structure are not well understood and afford a unique opportunity to study the metal–metal bond formation that influences molecular and material assembly in solution. We present model-independent analysis of the observed dynamics as well as an analysis incorporating time-resolved structural refinements of key bond lengths with <100 fs time resolution. We find that upon photoexcitation, the Pt atoms contract ∼0.25 Å toward the center of both the Ag- and the Tl-PtPOP complexes, as previously observed for the PtPOP anion. For the AgPtPOP system, an ultrafast Ag-Pt bond expansion of ∼0.2 Å is observed, whereas in contrast, the TlPtPOP system exhibits a Tl-Pt bond contraction of ∼0.3 Å upon photoexcitation. For both complexes, the change in electronic state leads to coherent (“wave-packet”) oscillations along the metal–Pt coordinates. Based on these structural dynamics, we propose an electronic structure model that describes the metal–metal bonding behavior in both the ground and excited state for both complexes.
The DREAM Endstation at the Linac Coherent Light Source
Free-electron lasers (FEL), with their ultrashort pulses, ultrahigh intensities, and high repetition rates at short wavelength, have provided new approaches to Atomic and Molecular Optical Science. One such approach is following the birth of a photo electron to observe ion dynamics on an ultrafast timescale. Such an approach presents the opportunity to decipher the photon-initiated structural dynamics of an isolated atomic and molecular species. It is a fundamental step towards understanding single- and non-linear multi-photon processes and coherent electron dynamics in atoms and molecules, ultimately leading to coherent control following FEL research breakthroughs in pulse shaping and polarization control. A key aspect for exploring photoinduced quantum phenomena is visualizing the collective motion of electrons and nuclei in a single reaction process, as dynamics in atoms/ions proceed at femtosecond (10−15 s) timescales while electronic dynamics take place in the attosecond timescale (10−18 s). Here, we report on the design of a Dynamic Reaction Microscope (DREAM) endstation located at the second interaction point of the Time-Resolved Molecular and Optical (TMO) instrument at the Linac Coherent Light Source (LCLS) capable of following the photon–matter interactions by detecting ions and electrons in coincidence. The DREAM endstation takes advantage of the pulse properties and high repetition rate of LCLS-II to perform gas-phase soft X-ray experiments in a wide spectrum of scientific domains. With its design ability to detect multi-ions and electrons in coincidence while operating in step with the high repetition rate of LCLS-II, the DREAM endstation takes advantage of the inherent momentum conservation of reaction product ions with participating electrons to reconstruct the original X-ray photon–matter interactions. In this report, we outline in detail the design of the DREAM endstation and its functionality, with scientific opportunities enabled by this state-of-the-art instrument.