Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Goard, Carolyn"
Sort by:
Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance
by
Penn, Linda Z
,
Clendening, James W
,
Goard, Carolyn A
in
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
,
Apoptosis
,
ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism
2010
Background
Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action.
Methods
The effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches.
Results
We demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis.
Conclusions
The results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes with doxorubicin, an agent administered for recurrent disease. This synergy occurs by a novel mevalonate-independent mechanism that antagonizes drug resistance, likely by inhibiting P-glycoprotein. These data raise important issues that may impact how statins can best be included in chemotherapy regimens.
Journal Article
A Novel Formulation of Tigecycline Has Enhanced Stability and Sustained Antibacterial and Antileukemic Activity
by
Goard, Carolyn A.
,
Hurren, Rose
,
Gronda, Marcela
in
Acute myeloid leukemia
,
Additives
,
Animals
2014
Tigecycline is a broad-spectrum, first-in-class glycylcycline antibiotic currently used to treat complicated skin and intra-abdominal infections, as well as community-acquired pneumonia. In addition, we have demonstrated that tigecycline also has in vitro and in vivo activity against acute myeloid leukemia (AML) due to its ability to inhibit mitochondrial translation. Tigecycline is relatively unstable after reconstitution, and this instability may limit the use of the drug in ambulatory infusions for the treatment of infection and may prevent the development of optimal dosing schedules for the treatment of AML. This study sought to identify a formulation that improved the stability of the drug after reconstitution and maintained its antimicrobial and antileukemic activity. A panel of chemical additives was tested to identify excipients that enhanced the stability of tigecycline in solution at room temperature for up to one week. We identified a novel formulation containing the oxygen-reducing agents ascorbic acid (3 mg/mL) and pyruvate (60 mg/mL), in saline solution, pH 7.0, in which tigecycline (1 mg/mL) remained intact when protected from light for at least 7 days. This formulation also preserved the drug's antibacterial and antileukemic activity in vitro. Moreover, the novel formulation retained tigecycline's antileukemic activity in vivo. Thus, we identified and characterized a novel formulation for tigecycline that preserves its stability and efficacy after reconstitution.
Journal Article
Mutations in UBA3 Confer Resistance to the NEDD8-Activating Enzyme Inhibitor MLN4924 in Human Leukemic Cells
by
Maclean, Neil
,
Petroski, Matthew D.
,
da Silva, Sara R.
in
Adenosine Triphosphate - chemistry
,
Adenosine Triphosphate - metabolism
,
Affinity
2014
The NEDD8-activating enzyme (NAE) initiates neddylation, the cascade of post-translational NEDD8 conjugation onto target proteins. MLN4924, a selective NAE inhibitor, has displayed preclinical anti-tumor activity in vitro and in vivo, and promising clinical activity has been reported in patients with refractory hematologic malignancies. Here, we sought to understand the mechanisms of resistance to MLN4924. K562 and U937 leukemia cells were exposed over a 6 month period to MLN4924 and populations of resistant cells (R-K562(MLN), R-U937(MLN)) were selected. R-K562(MLN) and R-U937(MLN) cells contain I310N and Y352H mutations in the NAE catalytic subunit UBA3, respectively. Biochemical analyses indicate that these mutations increase the enzyme's affinity for ATP while decreasing its affinity for NEDD8. These mutations effectively contribute to decreased MLN4924 potency in vitro while providing for sufficient NAE function for leukemia cell survival. Finally, R-K562(MLN) cells showed cross-resistance to other NAE-selective inhibitors, but remained sensitive to a pan-E1 (activating enzyme) inhibitor. Thus, our work provides insight into mechanisms of MLN4924 resistance to facilitate the development of more effective second-generation NAE inhibitors.
Journal Article
A Multicenter Phase I/II Study of Obatoclax Mesylate Administered as a 3- or 24-Hour Infusion in Older Patients with Previously Untreated Acute Myeloid Leukemia
by
Goard, Carolyn
,
Borthakur, Gautam
,
Raza, Azra
in
Acute myeloid leukemia
,
Aged
,
Aged, 80 and over
2014
An open-label phase I/II study of single-agent obatoclax determined a maximum tolerated dose (MTD) and schedule, safety, and efficacy in older patients (≥ 70 yr) with untreated acute myeloid leukemia (AML).
Phase I evaluated the safety of obatoclax infused for 3 hours on 3 consecutive days (3 h × 3 d) in 2-week cycles. Initial obatoclax dose was 30 mg/day (3 h × 3 d; n = 3). Obatoclax was increased to 45 mg/day (3 h × 3 d) if ≤ 1 patient had a dose-limiting toxicity (DLT) and decreased to 20 mg/day (3 h × 3 d) if DLT occurred in ≥ 2 patients. In the phase II study, 12 patients were randomized to receive obatoclax at the dose identified during phase I (3 h × 3 d) or 60 mg/day administered by continuous infusion over 24 hours for 3 days (24 h × 3 d) to determine the morphologic complete response rate.
In phase I, two of three patients receiving obatoclax 30 mg/day (3 h × 3 d) experienced grade 3 neurologic DLTs (confusion, ataxia, and somnolence). Obatoclax was decreased to 20 mg/day (3 h × 3 d). In phase II, no clinically relevant safety differences were observed between the 20 mg/day (3 h × 3 d; n = 7) and 60 mg/day (24 h × 3 d; n = 5) arms. Neurologic and psychiatric adverse events were most common and were generally transient and reversible. Complete response was not achieved in any patient.
Obatoclax 20 mg/day was the MTD (3 h × 3 d) in older patients with AML. In the schedules tested, single-agent obatoclax was not associated with an objective response. Evaluation in additional subgroups or in combination with other chemotherapy modalities may be considered for future study.
ClinicalTrials.gov NCT00684918.
Journal Article
Identifying molecular features that distinguish fluvastatin-sensitive breast tumor cells
by
Goard, Carolyn A.
,
Quiroga, Ariel D.
,
Wasylishen, Amanda R.
in
Antineoplastic Agents - pharmacology
,
Antioxidants - pharmacology
,
Apoptosis - drug effects
2014
Statins, routinely used to treat hypercholesterolemia, selectively induce apoptosis in some tumor cells by inhibiting the mevalonate pathway. Recent clinical studies suggest that a subset of breast tumors is particularly susceptible to lipophilic statins, such as fluvastatin. To quickly advance statins as effective anticancer agents for breast cancer treatment, it is critical to identify the molecular features defining this sensitive subset. We have therefore characterized fluvastatin sensitivity by MTT assay in a panel of 19 breast cell lines that reflect the molecular diversity of breast cancer, and have evaluated the association of sensitivity with several clinicopathological and molecular features. A wide range of fluvastatin sensitivity was observed across breast tumor cell lines, with fluvastatin triggering cell death in a subset of sensitive cell lines. Fluvastatin sensitivity was associated with an estrogen receptor alpha (ERα)-negative, basal-like tumor subtype, features that can be scored with routine and/or strong preclinical diagnostics. To ascertain additional candidate sensitivity-associated molecular features, we mined publicly available gene expression datasets, identifying genes encoding regulators of mevalonate production, non-sterol lipid homeostasis, and global cellular metabolism, including the oncogene
MYC
. Further exploration of this data allowed us to generate a 10-gene mRNA abundance signature predictive of fluvastatin sensitivity, which showed preliminary validation in an independent set of breast tumor cell lines. Here, we have therefore identified several candidate predictors of sensitivity to fluvastatin treatment in breast cancer, which warrant further preclinical and clinical evaluation.
Journal Article
An evidence-based review of obatoclax mesylate in the treatment of hematological malignancies
2013
Obatoclax mesylate is an intravenously-administered drug under investigation in Phase I and II clinical trials as a novel anticancer therapeutic for hematological malignancies and solid tumors. Obatoclax was developed as a pan-inhibitor of antiapoptotic members of the B cell chronic lymphocytic leukemia/lymphoma 2 (BCL-2) family of proteins, which control the intrinsic or mitochondrial pathway of apoptosis. Resistance to apoptosis through dysregulation of BCL-2 family members is commonly observed in hematological malignancies, and can be linked to therapeutic resistance and poor clinical outcomes. By inhibiting pro-survival BCL-2 family proteins, including MCL-1, obatoclax is proposed to (1) trigger cell death as a single agent, and (2) potentiate the anticancer effects of other therapeutics. Preclinical investigations have supported these proposals and have provided evidence suggestive of a promising therapeutic index for this drug. Phase I trials of obatoclax mesylate in leukemia and lymphoma have defined well-tolerated regimens and have identified transient neurotoxicity as the most common adverse effect of this drug. In these studies, a limited number of objective responses were observed, along with hematological improvement in a larger proportion of treated patients. Published Phase II evaluations in lymphoma and myelofibrosis, however, have not reported robust single-agent activity. Emerging evidence from ongoing preclinical and clinical investigations suggests that the full potential of obatoclax mesylate as a novel anticancer agent may be realized (1) in rational combination treatments, and (2) when guided by molecular predictors of therapeutic response. By understanding the molecular underpinnings of obatoclax response, along with optimal therapeutic regimens and indications, the potential of obatoclax mesylate for the treatment of hematological malignancies may be further clarified.
Journal Article
Identifying molecular features that distinguish fluvastatinsensitive breast tumor cells
by
Clendening, James W
,
Wasylishen, Amanda R
,
Sendorek, Dorota H.S
in
Apoptosis
,
Breast cancer
,
Estrogen
2014
Statins, routinely used to treat hypercholesterolemia, selectively induce apoptosis in some tumor cells by inhibiting the mevalonate pathway. Recent clinical studies suggest that a subset of breast tumors is particularly susceptible to lipophilic statins, such as fluvastatin. To quickly advance statins as effective anticancer agents for breast cancer treatment, it is critical to identify the molecular features defining this sensitive subset. We have therefore characterized fluvastatin sensitivity by MTT assay in a panel of 19 breast cell lines that reflect the molecular diversity of breast cancer, and have evaluated the association of sensitivity with several clinicopathological and molecular features. A wide range of fluvastatin sensitivity was observed across breast tumor cell lines, with fluvastatin triggering cell death in a subset of sensitive cell lines. Fluvastatin sensitivity was associated with an estrogen receptor alpha (ERα)-negative, basal-like tumor subtype, features that can be scored with routine and/or strong preclinical diagnostics. To ascertain additional candidate sensitivity-associated molecular features, we mined publicly available gene expression datasets, identifying genes encoding regulators of mevalonate production, nonsterol lipid homeostasis, and global cellular metabolism, including the oncogene MYC. Further exploration of this data allowed us to generate a 10-gene mRNA abundance signature predictive of fluvastatin sensitivity, which showed preliminary validation in an independent set of breast tumor cell lines. Here, we have therefore identified several candidate predictors of sensitivity to fluvastatin treatment in breast cancer, which warrant further preclinical and clinical evaluation. Keywords Statin * Fluvastatin * Breast cancer * Estrogen receptor * Gene expression * Drug sensitivity
Journal Article
A consolidated catalogue and graphical annotation of dbSNP polymorphisms in the human tissue kallikrein ( KLK) locus
by
Goard, Carolyn A.
,
Elliott, Marc B.
,
Diamandis, Eleftherios P.
in
Annotations
,
Biotechnology
,
Chromosome Mapping
2007
The human tissue kallikreins, 15 secreted serine proteases, may play diverse roles in pathophysiology. The National Center for Biotechnology Information's dbSNP was mined for polymorphisms located within the kallikrein (
KLK) locus using custom-designed “ParSNPs” and “LocusAnnotator” software tools. Using “ParSNPs”, a filterable catalogue of 1856
KLK polymorphisms (1023 validated) was generated. “LocusAnnotator” was used to annotate the
KLK locus sequence with gene and polymorphism features. A second locus was examined to validate the use of both programs on a non-kallikrein locus. This report may assist in the informed selection of
KLK polymorphisms for future association and biochemical studies in relation to disease. Furthermore, “ParSNPs” and “LocusAnnotator” are available at no cost from our website (
www.acdcLab.org/annotations) to examine other loci.
Journal Article
Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance
by
Penn, Linda Z
,
Clendening, James W
,
Goard, Carolyn A
in
Apoptosis
,
Dosage and administration
,
Doxorubicin
2010
Background Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action. Methods The effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches. Results We demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis. Conclusions The results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes with doxorubicin, an agent administered for recurrent disease. This synergy occurs by a novel mevalonate-independent mechanism that antagonizes drug resistance, likely by inhibiting P-glycoprotein. These data raise important issues that may impact how statins can best be included in chemotherapy regimens.
Journal Article
A Novel Formulation of Tigecycline Has Enhanced Stability and Sustained Antibacterial and Antileukemic Activity: e95281
2014
Tigecycline is a broad-spectrum, first-in-class glycylcycline antibiotic currently used to treat complicated skin and intra-abdominal infections, as well as community-acquired pneumonia. In addition, we have demonstrated that tigecycline also has in vitro and in vivo activity against acute myeloid leukemia (AML) due to its ability to inhibit mitochondrial translation. Tigecycline is relatively unstable after reconstitution, and this instability may limit the use of the drug in ambulatory infusions for the treatment of infection and may prevent the development of optimal dosing schedules for the treatment of AML. This study sought to identify a formulation that improved the stability of the drug after reconstitution and maintained its antimicrobial and antileukemic activity. A panel of chemical additives was tested to identify excipients that enhanced the stability of tigecycline in solution at room temperature for up to one week. We identified a novel formulation containing the oxygen-reducing agents ascorbic acid (3 mg/mL) and pyruvate (60 mg/mL), in saline solution, pH 7.0, in which tigecycline (1 mg/mL) remained intact when protected from light for at least 7 days. This formulation also preserved the drug's antibacterial and antileukemic activity in vitro. Moreover, the novel formulation retained tigecycline's antileukemic activity in vivo. Thus, we identified and characterized a novel formulation for tigecycline that preserves its stability and efficacy after reconstitution.
Journal Article