Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
123 result(s) for "Goh, Boon Cher"
Sort by:
Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges
Exosomes (versatile, cell-derived nanovesicles naturally endowed with exquisite target-homing specificity and the ability to surmount in vivo biological barriers) hold substantial promise for developing exciting approaches in drug delivery and cancer immunotherapy. Specifically, bioengineered exosomes are being successfully deployed to deliver potent tumoricidal drugs (siRNAs and chemotherapeutic compounds) preferentially to cancer cells, while a new generation of exosome-based therapeutic cancer vaccines has produced enticing results in early-phase clinical trials. Here, we review the state-of-the-art technologies and protocols, and discuss the prospects and challenges for the clinical development of this emerging class of therapeutics. Exosomes are extracellular cell-derived phospholipid nanovesicles that function as signalosomes, transmitting prodigious amounts of bioactive molecules to specific recipient tissues. Their intriguing endogenous functionalities have galvanized momentous efforts to exploit them as novel anticancer therapeutics. Exosomes may offer a tractable, bioinspired system for targeted drug delivery, which could improve the therapeutic indices of conventional cytotoxic chemotherapeutic agents, and help to realize the enormous potential of gene therapy in oncology. Owing to their immunomodulatory potential, exosomes may also be deployed in innovative immunological approaches to activate adaptive and innate effector cell-mediated anticancer immunosurveillance.
Third generation EGFR TKIs: current data and future directions
Acquired T790 M mutation is the commonest cause of resistance for advanced non-small cell lung cancer (NSCLC) epidermal growth factor receptor (EGFR) mutant patients who had progressed after first line EGFR TKI (tyrosine kinase inhibitor). Several third generation EGFR TKIs which are EGFR mutant selective and wild-type (WT) sparing were developed to treat these patients with T790 M acquired resistant mutation. Osimertinib is one of the third generation EGFR TKIs and is currently the most advanced in clinical development. Unfortunately, despite good initial response, patients who was treated with third generation EGFR TKI would develop acquired resistance and several mechanisms had been identified and the commonest being C797S mutation at exon 20. Several novel treatment options were being developed for patients who had progressed on third generation EGFR TKI but they are still in the early phase of development. Osimertinib under FLAURA study had been shown to have better progression-free survival over first generation EGFR TKI in the first line setting and likely will become the new standard of care.
Blood–Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges
Glioblastoma (GBM) is a prevalent type of malignancy within the central nervous system (CNS) that is associated with a poor prognosis. The standard treatment for GBM includes the surgical resection of the tumor, followed by radiotherapy and chemotherapy; yet, despite these interventions, overall treatment outcomes remain suboptimal. The blood–brain barrier (BBB), which plays a crucial role in maintaining the stability of brain tissue under normal physiological conditions of the CNS, also poses a significant obstacle to the effective delivery of therapeutic agents to GBMs. Recent preclinical studies have demonstrated that nanomedicine delivery systems (NDDSs) offer promising results, demonstrating both effective GBM targeting and safety, thereby presenting a potential solution for targeted drug delivery. In this review, we first explore the various strategies employed in preclinical studies to overcome the BBB for drug delivery. Subsequently, the results of the clinical translation of NDDSs are summarized, highlighting the progress made. Finally, we discuss potential strategies for advancing the development of NDDSs and accelerating their translational research through well-designed clinical trials in GBM therapy.
The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy
Exosomes are multifunctional regulators of intercellular communication by carrying various messages under both physiological and pathological status of cancer patients. Accumulating studies have identified the presence of circular RNAs (circRNAs) in exosomes with crucial regulatory roles in diverse pathophysiological processes. Exosomal circRNAs derived from donor cells can modulate crosstalk with recipient cells locally or remotely to enhance cancer development and propagation, and play crucial roles in the tumor microenvironment (TME), leading to significant enhancement of tumor immunity, metabolism, angiogenesis, drug resistance, epithelial mesenchymal transition (EMT), invasion and metastasis. In this review, we describe the advances of exosomal circRNAs and their roles in modulating cancer hallmarks, especially those in the TME. Moreover, clinical application potential of exosomal circRNAs in cancer diagnosis and therapy are highlighted, bridging the gap between basic knowledge and clinical practice.
Validation of a Rapid and Sensitive LC-MS/MS Method for Determination of Exemestane and Its Metabolites, 17β-Hydroxyexemestane and 17β-Hydroxyexemestane-17-O-β-D-Glucuronide: Application to Human Pharmacokinetics Study
A novel, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the evaluation of exemestane pharmacokinetics and its metabolites, 17β-dihydroexemestane (active metabolite) and 17β-dihydroexemestane-17-O-β-D-glucuronide (inactive metabolite) in human plasma. Their respective D3 isotopes were used as internal standards. Chromatographic separation of analytes was achieved using Thermo Fisher BDS Hypersil C18 analytic HPLC column (100 × 2.1 mm, 5 μm). The mobile phase was delivered at a rate of 0.5 mL/min by gradient elution with 0.1% aqueous formic acid and acetonitrile. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionisation (ESI) and monitored by multiple reaction monitoring (MRM) in positive mode. Mass transitions 297 > 121 m/z, 300 > 121 m/z, 299 > 135 m/z, 302 > 135 m/z, 475 > 281 m/z, and 478 > 284 m/z were monitored for exemestane, exemestane-d3, 17β-dihydroexemestane, 17β-dihydroexemestane-d3, 17β-dihydroexemestane-17-O-β-D-glucuronide, and 17β-dihydroexemestane-17-O-β-D-glucuronide-d3 respectively. The assay demonstrated linear ranges of 0.4-40.0 ng/mL, for exemestane; and 0.2-15.0 ng/mL, for 17β-dihydroexemestane and 17β-dihydroexemestane-17-O-β-D-glucuronide, with coefficient of determination (r2) of > 0.998. The precision (coefficient of variation) were ≤10.7%, 7.7% and 9.5% and the accuracies ranged from 88.8 to 103.1% for exemestane, 98.5 to 106.1% for 17β-dihydroexemestane and 92.0 to 103.2% for 17β-dihydroexemestane-17-O-β-D-glucuronide. The method was successfully applied to a pharmacokinetics/dynamics study in breast cancer patients receiving exemestane 25 mg daily orally. For a representative patient, 20.7% of exemestane in plasma was converted into 17β-dihydroexemestane and 29.0% of 17β-dihydroexemestane was inactivated as 17β-dihydroexemestane-17-O-β-D-glucuronide 24 hours after ingestion of exemestane, suggesting that altered 17-dihydroexemestane glucuronidation may play an important role in determining effect of exemestane against breast cancer cells.
Comparison of the pharmacokinetics and pharmacodynamics of S-1 between Caucasian and East Asian patients
S‐1 is an oral fluoropyrimidine anti‐neoplastic agent that is converted by CYP2A6 to 5‐fluorouracil (5FU). We prospectively studied the pharmacokinetics and pharmacodynamics of S‐1 in two groups of East Asian and Caucasian patients with solid malignancy refractory to standard chemotherapy, or for which 5FU was indicated, to elucidate differences in relation to CYP2A6 genotype and phenotype. S‐1 was given orally at 30 mg/m2 b.i.d. for 14 days every 21 days. Dose normalized AUC0–48 h for tegafur (P = 0.05) and gimeracil (P = 0.036) were higher in East Asians; conversely, AUC0–48 h of fluoro‐β‐alanine was higher in Caucasians (P = 0.044). Exposure to 5FU was similar in both groups (P = 0.967). Mean cotinine:nicotine ratio was 54% higher in the Caucasian group (P = 0.03), and correlated with oral clearance of tegafur (r = 0.59; P = 0.002). Grade 3/4 gastrointestinal toxicities were more common in Caucasians than Asians (21%vs 0%). Treatment with S‐1 yields no significant difference in 5FU exposure between Caucasians and East Asians. (Cancer Sci 2011; 102: 478–483)
Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer
Epithelial ovarian cancer (EOC) is hallmarked by a high degree of heterogeneity. To address this heterogeneity, a classification scheme was developed based on gene expression patterns of 1538 tumours. Five, biologically distinct subgroups — Epi‐A, Epi‐B, Mes, Stem‐A and Stem‐B — exhibited significantly distinct clinicopathological characteristics, deregulated pathways and patient prognoses, and were validated using independent datasets. To identify subtype‐specific molecular targets, ovarian cancer cell lines representing these molecular subtypes were screened against a genome‐wide shRNA library. Focusing on the poor‐prognosis Stem‐A subtype, we found that two genes involved in tubulin processing, TUBGCP4 and NAT10 , were essential for cell growth, an observation supported by a pathway analysis that also predicted involvement of microtubule‐related processes. Furthermore, we observed that Stem‐A cell lines were indeed more sensitive to inhibitors of tubulin polymerization, vincristine and vinorelbine, than the other subtypes. This subtyping offers new insights into the development of novel diagnostic and personalized treatment for EOC patients. Graphical Abstract Ovarian carcinomas remain a leading cause of cancer death among woman worldwide. Here, a novel rational patient stratification is proposed to unravel the heterogeneity of these cancers and provide means to guide novel intervention strategies.
The application of organoids in treatment decision-making for digestive system cancers: progress and challenges
Digestive system cancers—including gastric, liver, colorectal, esophageal, and pancreatic malignancies—remain leading causes of cancer death, with treatment resistance posing major challenges in advanced disease. Patient-derived cancer organoids (PDCOs), 3D mini-tumors grown from patient biopsies, have revolutionized personalized oncology by faithfully replicating tumor biology and enabling predictive drug testing for chemotherapy, radiotherapy, targeted therapy, and immunotherapy. While demonstrating good predictive accuracy, current limitations include incomplete tumor microenvironments, variable establishment rates, and lengthy processing times. Emerging technologies like AI, organ-on-chip systems, and 3D bioprinting are addressing these challenges, while clinical trials explore applications in neoadjuvant therapy and real-time treatment guidance. This Review highlights key advances in PDCO technology and its transformative potential for treatment decision-making in digestive system cancers, bridging laboratory research with clinical care to enable truly personalized therapeutic strategies tailored to individual tumor biology.
Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma
Single-agent checkpoint inhibitor (CPI) activity in Epstein-Barr Virus (EBV) related nasopharyngeal carcinoma (NPC) is limited. Dual CPI shows increased activity in solid cancers. In this single-arm phase II trial (NCT03097939), 40 patients with recurrent/metastatic EBV-positive NPC who failed prior chemotherapy receive nivolumab 3 mg/kg every 2 weeks and ipilimumab 1 mg/kg every 6 weeks. Primary outcome of best overall response rate (BOR) and secondary outcomes (progression-free survival [PFS], clinical benefit rate, adverse events, duration of response, time to progression, overall survival [OS]) are reported. The BOR is 38% with median PFS and OS of 5.3 and 19.5 months, respectively. This regimen is well-tolerated and treatment-related adverse events requiring discontinuation are low. Biomarker analysis shows no correlation of outcomes to PD-L1 expression or tumor mutation burden. While the BOR does not meet pre-planned estimates, patients with low plasma EBV-DNA titre (<7800 IU/ml) trend to better response and PFS. Deep immunophenotyping of pre- and on-treatment tumor biopsies demonstrate early activation of the adaptive immune response, with T-cell cytotoxicity seen in responders prior to any clinically evident response. Immune-subpopulation profiling also identifies specific PD-1 and CTLA-4 expressing CD8 subpopulations that predict for response to combined immune checkpoint blockade in NPC. Dual PD-1 and CTLA-4 checkpoint blockade has proven effective in several cancer types. Here the authors report the results of a clinical trial of anti-PD1 (nivolumab) and anti-CTLA4 (ipilimumab) in patients with recurrent/metastatic EBV-positive nasopharyngeal carcinoma.
Clinical translation of patient-derived tumour organoids- bottlenecks and strategies
Multiple three-dimensional (3D) tumour organoid models assisted by multi-omics and Artificial Intelligence (AI) have contributed greatly to preclinical drug development and precision medicine. The intrinsic ability to maintain genetic and phenotypic heterogeneity of tumours allows for the reconciliation of shortcomings in traditional cancer models. While their utility in preclinical studies have been well established, little progress has been made in translational research and clinical trials. In this review, we identify the major bottlenecks preventing patient-derived tumour organoids (PDTOs) from being used in clinical setting. Unsuitable methods of tissue acquisition, disparities in establishment rates and a lengthy timeline are the limiting factors for use of PDTOs in clinical application. Potential strategies to overcome this include liquid biopsies via circulating tumour cells (CTCs), an automated organoid platform and optical metabolic imaging (OMI). These proposed solutions accelerate and optimize the workflow of a clinical organoid drug screening. As such, PDTOs have the potential for potential applications in clinical oncology to improve patient outcomes. If remarkable progress is made, cancer patients can finally benefit from this revolutionary technology.