Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
84 result(s) for "Golay, Xavier"
Sort by:
The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test–retest study
Arterial Spin Labeling (ASL) is a method to measure perfusion using magnetically labeled blood water as an endogenous tracer. Being fully non-invasive, this technique is attractive for longitudinal studies of cerebral blood flow in healthy and diseased individuals, or as a surrogate marker of metabolism. So far, ASL has been restricted mostly to specialist centers due to a generally low SNR of the method and potential issues with user-dependent analysis needed to obtain quantitative measurement of cerebral blood flow (CBF). Here, we evaluated a particular implementation of ASL (called Quantitative STAR labeling of Arterial Regions or QUASAR), a method providing user independent quantification of CBF in a large test–retest study across sites from around the world, dubbed “The QUASAR reproducibility study”. Altogether, 28 sites located in Asia, Europe and North America participated and a total of 284 healthy volunteers were scanned. Minimal operator dependence was assured by using an automatic planning tool and its accuracy and potential usefulness in multi-center trials was evaluated as well. Accurate repositioning between sessions was achieved with the automatic planning tool showing mean displacements of 1.87±0.95 mm and rotations of 1.56±0.66°. Mean gray matter CBF was 47.4±7.5 [ml/100 g/min] with a between-subject standard variation SDb=5.5 [ml/100 g/min] and a within-subject standard deviation SDw=4.7 [ml/100 g/min]. The corresponding repeatability was 13.0 [ml/100 g/min] and was found to be within the range of previous studies.
Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging
The mechanisms underlying the pathogenesis of multiple sclerosis induce the changes that underpin relapse-associated and progressive disability. Disease mechanisms can be investigated in preclinical models and patients with multiple sclerosis by molecular and metabolic imaging techniques. Many insights have been gained from such imaging studies: persisting inflammation in the absence of a damaged blood–brain barrier, activated microglia within and beyond lesions, increased mitochondrial activity after acute lesions, raised sodium concentrations in the brain, increased glutamate in acute lesions and normal-appearing white matter, different degrees of demyelination in different patients and lesions, early neuronal damage in grey matter, and early astrocytic proliferation and activation in lesions and white matter. Clinical translation of molecular and metabolic imaging and extension of these techniques will enable the assessment of novel drugs targeted at these disease mechanisms, and have the potential to improve health outcomes through the stratification of patients for treatments.
CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing
PurposeAccurate glioma classification affects patient management and is challenging on non- or low-enhancing gliomas. This study investigated the clinical value of different chemical exchange saturation transfer (CEST) metrics for glioma classification and assessed the diagnostic effect of the presence of abundant fluid in glioma subpopulations.MethodsForty-five treatment-naïve glioma patients with known isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status received CEST MRI (B1rms = 2μT, Tsat = 3.5 s) at 3 T. Magnetization transfer ratio asymmetry and CEST metrics (amides: offset range 3–4 ppm, amines: 1.5–2.5 ppm, amide/amine ratio) were calculated with two models: ‘asymmetry-based’ (AB) and ‘fluid-suppressed’ (FS). The presence of T2/FLAIR mismatch was noted.ResultsIDH-wild type had higher amide/amine ratio than IDH-mutant_1p/19qcodel (p < 0.022). Amide/amine ratio and amine levels differentiated IDH-wild type from IDH-mutant (p < 0.0045) and from IDH-mutant_1p/19qret (p < 0.021). IDH-mutant_1p/19qret had higher amides and amines than IDH-mutant_1p/19qcodel (p < 0.035). IDH-mutant_1p/19qret with AB/FS mismatch had higher amines than IDH-mutant_1p/19qret without AB/FS mismatch ( < 0.016). In IDH-mutant_1p/19qret, the presence of AB/FS mismatch was closely related to the presence of T2/FLAIR mismatch (p = 0.014).ConclusionsCEST-derived biomarkers for amides, amines, and their ratio can help with histomolecular staging in gliomas without intense contrast enhancement. T2/FLAIR mismatch is reflected in the presence of AB/FS CEST mismatch. The AB/FS CEST mismatch identifies glioma subgroups that may have prognostic and clinical relevance.
Partial volume correction in arterial spin labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis step too far?
•Partial volume effects influence studies of brain perfusion.•Systematic and random effects on perfusion can occur within and between groups.•Partial volume correction strategies are available, but underused. The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent. In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption. We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, ‘uncorrected’, images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods. [Display omitted]
In vivo imaging of glucose uptake and metabolism in tumors
There is a pressing need for techniques that can be used for the noninvasive assessment of response to therapy and staging of disease. As many pathological conditions are associated with disordered glucose metabolism, such as diabetes, stroke and cancer, Simon Walker-Samuel and his colleagues have developed a noninvasive MRI-based method for imaging glucose uptake in vivo termed glucose chemical exchange saturation transfer (glucoCEST). This potentially cost-effective approach does not require the use of radiolabeled glucose analogs or ionizing radiation and allows nonlabeled glucose to be imaged at physiological quantities. Tumors have a greater reliance on anaerobic glycolysis for energy production than normal tissues. We developed a noninvasive method for imaging glucose uptake in vivo that is based on magnetic resonance imaging and allows the uptake of unlabeled glucose to be measured through the chemical exchange of protons between hydroxyl groups and water. This method differs from existing molecular imaging methods because it permits detection of the delivery and uptake of a metabolically active compound in physiological quantities. We show that our technique, named glucose chemical exchange saturation transfer (glucoCEST), is sensitive to tumor glucose accumulation in colorectal tumor models and can distinguish tumor types with differing metabolic characteristics and pathophysiologies. The results of this study suggest that glucoCEST has potential as a useful and cost-effective method for characterizing disease and assessing response to therapy in the clinic.
Imaging Brain Deoxyglucose Uptake and Metabolism by Glucocest MRI
2-Deoxy-D-glucose (2DG) is a known surrogate molecule that is useful for inferring glucose uptake and metabolism. Although 13C-labeled 2DG can be detected by nuclear magnetic resonance (NMR), its low sensitivity for detection prohibits imaging to be performed. Using chemical exchange saturation transfer (CEST) as a signal-amplification mechanism, 2DG and the phosphorylated 2DG-6-phosphate (2DG6P) can be indirectly detected in 1H magnetic resonance imaging (MRI). We showed that the CEST signal changed with 2DG concentration, and was reduced by suppressing cerebral metabolism with increased general anesthetic. The signal changes were not affected by cerebral or plasma pH, and were not correlated with altered cerebral blood flow as demonstrated by hypercapnia; neither were they related to the extracellular glucose amounts as compared with injection of D- and L-glucose. In vivo 31P NMR revealed similar changes in 2DG6P concentration, suggesting that the CEST signal reflected the rate of glucose assimilation. This method provides a new way to use widely available MRI techniques to image deoxyglucose/glucose uptake and metabolism in vivo without the need for isotopic labeling of the molecules.
ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies
Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.
High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model
With the current practice of therapeutic hypothermia for neonatal encephalopathy, disability rates and the severity spectrum of cerebral palsy are reduced. Nevertheless, safe and effective adjunct therapies are needed to optimize outcomes. This study’s objective was to assess if 18 mg/kg melatonin given rapidly over 2 h at 1 h after hypoxia-ischemia with cooling from 1–13 h was safe, achieved therapeutic levels within 3 h and augmented hypothermic neuroprotection. Following hypoxia-ischemia, 20 newborn piglets were randomized to: (i) Cooling 1–13 h (HT; n = 6); (ii) HT+ 2.5% ethanol vehicle (HT+V; n = 7); (iii) HT + Melatonin (HT+M; n = 7). Intensive care was maintained for 48 h; aEEG was acquired throughout, brain MRS acquired at 24 and 48 h and cell death (TUNEL) evaluated at 48 h. There were no differences for insult severity. Core temperature was higher in HT group for first hour after HI. Comparing HT+M to HT, aEEG scores recovered more quickly by 19 h (p < 0.05); comparing HT+V to HT, aEEG recovered from 31 h (p < 0.05). Brain phosphocreatine/inorganic phosphate and NTP/exchangeable phosphate were higher at 48 h in HT+M versus HT (p = 0.036, p = 0.049 respectively). Including both 24 h and 48 h measurements, the rise in Lactate/N-acetyl aspartate was reduced in white (p = 0.030) and grey matter (p = 0.038) after HI. Reduced overall TUNEL positive cells were observed in HT+M (47.1 cells/mm 2 ) compared to HT (123.8 cells/mm 2 ) (p = 0.0003) and HT+V (97.5 cells/mm 2 ) compared to HT (p = 0.012). Localized protection was seen in white matter for HT+M versus HT (p = 0.036) and internal capsule for HT+M compared to HT (p = 0.001) and HT+V versus HT (p = 0.006). Therapeutic melatonin levels (15–30mg/l) were achieved at 2 h and were neuroprotective following HI, but ethanol vehicle was partially protective.
ESR Statement on the Validation of Imaging Biomarkers
Medical imaging capable of generating imaging biomarkers, specifically radiology and nuclear medicine image acquisition and analysis processes, differs from frequently used comparators like blood or urine biomarkers. This difference arises from the sample acquisition methodology. While different analysis methodologies and equipment provide slightly different results in any analytical domain, unlike blood or urine analysis where the samples are obtained by simple extraction or excretion, in radiology the acquisition of the sample is heterogeneous by design, since complex equipment from different vendors is used. Therefore, with this additional degree of freedom in medical imaging, there is still risk of persistent heterogeneity of image quality through time, due to different technological implementations across vendors and protocols used in different centres. Quantitative imaging biomarkers have yet to demonstrate an impact on clinical practice due to this lack of comprehensive standardisation in terms of technical aspects of image acquisition, analysis algorithms, processes and clinical validation. The aim is establishing a standard methodology based on metrology for the validation of image acquisition and analysis methods used in the extraction of biomarkers and radiomics data. The appropriate implementation of the guidelines herein proposed by radiology departments, research institutes and industry will allow for a significant reduction in inter-vendor & inter-centre variability in imaging biomarkers and determine the measurement error obtained, enabling them to be used in imaging-based criteria for diagnosis, prognosis or treatment response, ultimately improving clinical workflows and patient care. The validation of developed analytical methods must be based on a technical performance validation and clinical validation.