Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
634 result(s) for "Goldblatt, David"
Sort by:
SARS-CoV-2: from herd immunity to hybrid immunity
Herd immunity, where a pathogen can no longer efficiently spread in a population, is achieved when a large proportion of the population becomes immune, making the spread of infection from person to person unlikely and protecting those without immunity. Despite the global spread of SARS-CoV-2, the failure of virus- and vaccine-induced immunity to prevent transmission, combined with the emergence of antigenically distinct variants, has made herd immunity to SARS-CoV-2 unachievable thus far. Where does this leave us?Herd immunity to SARS-CoV-2 has not materialized. In this Comment, David Goldblatt discusses the underlying reasons and their implications.
Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination
Scully and colleagues report 23 cases of abnormal clotting, primarily involving the cerebral veins, 6 to 24 days after the first dose of the ChAdOx1 nCoV-19 vaccine. The syndrome was incited by antibodies to platelet factor 4, independent of heparin therapy. Early recognition and avoidance of platelet transfusion are key.
Evidence for antibody as a protective correlate for COVID-19 vaccines
A correlate of protection (CoP) is urgently needed to expedite development of additional COVID-19 vaccines to meet unprecedented global demand. To assess whether antibody titers may reasonably predict efficacy and serve as the basis of a CoP, we evaluated the relationship between efficacy and in vitro neutralizing and binding antibodies of 7 vaccines for which sufficient data have been generated. Once calibrated to titers of human convalescent sera reported in each study, a robust correlation was seen between neutralizing titer and efficacy (ρ = 0.79) and binding antibody titer and efficacy (ρ = 0.93), despite geographically diverse study populations subject to different forces of infection and circulating variants, and use of different endpoints, assays, convalescent sera panels and manufacturing platforms. Together with evidence from natural history studies and animal models, these results support the use of post-immunization antibody titers as the basis for establishing a correlate of protection for COVID-19 vaccines.
Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study
Efficacy of the 13-valent pneumococcal conjugate vaccine (PCV13) was inferred before licensure from an aggregate correlate of protection established for the seven-valent vaccine (PCV7). We did a postlicensure assessment of serotype-specific vaccine effectiveness and immunogenicity in England, Wales, and Northern Ireland to derive the correlates of protection for individual serotypes. We assessed vaccine effectiveness against invasive pneumococcal disease using the indirect cohort method. We measured serotype-specific IgG concentration in infants after they were given two priming doses of PCV7 (n=126) or PCV13 (n=237) and opsonophagocytic antibody titre from a subset of these infants (n=100). We derived correlates of protection by relating percentage protection to a threshold antibody concentration achieved by an equivalent percentage of infants. We used multivariable logistic regression to estimate vaccine effectiveness and reverse cumulative distribution curves to estimate correlates of protection. For the 706 cases of invasive pneumococcal disease included in the study, PCV13 vaccine effectiveness after two doses before age 12 months or one dose from 12 months was 75% (95% CI 58–84). Vaccine effectiveness was 90% (34–98) for the PCV7 serotypes and 73% (55–84) for the six additional serotypes included in PCV13. Protection was shown for four of the six additional PCV13 serotypes (vaccine effectiveness for serotype 3 was not significant and no cases of serotype 5 infection occurred during the observation period). The vaccine effectiveness for PCV13 and PCV7 was lower than predicted by the aggregate correlate of protection of 0·35 μg/mL used during licensing. Calculated serotype-specific correlates of protection were higher than 0·35 μg/mL for serotypes 1, 3, 7F, 19A, 19F, and lower than 0·35 μg/mL for serotypes 6A, 6B, 18C, and 23F. Opsonophagocytic antibody titres of 1 in 8 or higher did not predict protection. PCV13 provides significant protection for most of the vaccine serotypes. Although use of the aggregate correlate of protection of 0·35 μg/mL has enabled the licensing of effective new PCVs, serotype-specific correlates of protection vary widely. The relation between IgG concentration after priming and long-term protection needs to be better understood. Public Health England and UK Department of Health Research and Development Directorate.
Towards a population-based threshold of protection for COVID-19 vaccines
Correlates of protection for COVID-19 vaccines are urgently needed to license additional vaccines. We measured immune responses to four COVID-19 vaccines of proven efficacy using a single serological platform. IgG anti-Spike antibodies were highly correlated with ID50 neutralization in a validated pseudoviral assay and correlated significantly with efficacies for protection against infection with wild-type, alpha and delta variant SARS-CoV-2 virus. The protective threshold for each vaccine was calculated for IgG anti-Spike antibody. The mean protective threshold for all vaccine studies for WT virus was 154 BAU/ml (95 %CI 42–559), and for studies with antibody distributions that enabled precise estimation of thresholds (i.e. leaving out 2-dose mRNA regimens) was 60 BAU/ml (95 %CI 35–102). We propose that the proportion of individuals with responses above the appropriate protective threshold together with the geometric mean concentration can be used in comparative non-inferiority studies with licensed vaccines to ensure that new vaccines will be efficacious.
The fundamental link between pneumococcal carriage and disease
Streptococcus pneumoniae (pneumococcus) is a major cause of worldwide mortality and morbidity, and to a large extent is vaccine-preventable. Nasopharyngeal carriage of pneumococcus precedes disease and is the source of pneumococcal spread between people. The use of vaccine effect on carriage as part of the vaccine licensure and post-vaccine introduction evaluation could facilitate and expand the licensure of new, life-saving pneumococcal vaccines and enable a comprehensive estimate of population effects after vaccine introduction. The authors provide a review of the evidence supporting pneumococcal carriage at the individual level as an immediate and necessary precursor to pneumococcal disease. Based on such a causal link between carriage and disease, the authors emphasize the role of information on pneumococcal carriage in vaccine trials and in public health decision-making.
Antimicrobial mitochondrial reactive oxygen species induction by lung epithelial immunometabolic modulation
Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infection an urgent need. Manipulating the lungs’ intrinsic host defenses by therapeutic delivery of certain pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODN) with mitochondrial voltage-dependent anion channel 1 (VDAC1). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), increases mitochondrial membrane potential (Δ Ψm ), differentially modulates ETC complex activities and consequently results in leak of electrons from ETC complex III and superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy to broadly protect against pneumonia without reliance on antibiotics.
Neonatal Immunization: Rationale, Current State, and Future Prospects
Infections take their greatest toll in early life necessitating robust approaches to protect the very young. Here, we review the rationale, current state, and future research directions for one such approach: neonatal immunization. Challenges to neonatal immunization include natural concern about safety as well as a distinct neonatal immune system that is generally polarized against Th1 responses to many stimuli such that some vaccines that are effective in adults are not in newborns. Nevertheless, neonatal immunization could result in high-population penetration as birth is a reliable point of healthcare contact, and offers an opportunity for early protection of the young, including preterm newborns who are deficient in maternal antibodies. Despite distinct immunity and reduced responses to some vaccines, several vaccines have proven safe and effective at birth. While some vaccines such as polysaccharide vaccines have little effectiveness at birth, hepatitis B vaccine can prime at birth and requires multiple doses to achieve protection, whereas the live-attenuated Bacille Calmette-Guérin (BCG), may offer single shot protection, potentially in part heterologous (\"non-specific\") beneficial effects. Additional vaccines have been studied at birth including those directed against pertussis, pneumococcus, type B and rotavirus providing important lessons. Current areas of research in neonatal vaccinology include characterization of early life immune ontogeny, heterogeneity in and heterologous effects of BCG vaccine formulations, applying systems biology and systems serology, platforms that model age-specific human immunity and discovery and development of novel age-specific adjuvantation systems. These approaches may inform, de-risk, and accelerate development of novel vaccines for use in early life. Key stakeholders, including the general public, should be engaged in assessing the opportunities and challenges inherent to neonatal immunization.
When to update COVID-19 vaccine composition
Vaccines against different SARS-CoV-2 variants have been approved, but continued surveillance is needed to determine when the antigen composition of vaccines should be updated, together with clinical studies to assess vaccine efficacy.
Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes
Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of \"mosaic genes\" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology.