Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Publisher
    • Source
    • Donor
    • Place of Publication
    • Contributors
    • Location
2 result(s) for "Goldfarb, Avi, author"
Sort by:
Prediction machines : the simple economics of artificial intelligence
The idea of artificial intelligence--job-killing robots, self-driving cars, and self-managing organizations--captures the imagination, evoking a combination of wonder and dread for those of us who will have to deal with the consequences. But what if it's not quite so complicated? The real job of artificial intelligence, argue these three eminent economists, is to lower the cost of prediction. And once you start talking about costs, you can use some well-established economics to cut through the hype. The constant challenge for all managers is to make decisions under uncertainty. And AI contributes by making knowing what's coming in the future cheaper and more certain. But decision making has another component: judgment, which is firmly in the realm of humans, not machines. Making prediction cheaper means that we can make more predictions more accurately and assess them with our better (human) judgment. Once managers can separate tasks into components of prediction and judgment, we can begin to understand how to optimize the interface between humans and machines. More than just an account of AI's powerful capabilities, Prediction Machines shows managers how they can most effectively leverage AI, disrupting business as usual only where required, and provides businesses with a toolkit to navigate the coming wave of challenges and opportunities.-- Provided by publisher
Power and prediction : the disruptive economics of artificial intelligence
\"Banking and finance, pharmaceuticals, automotive, medical technology, retail. Artificial intelligence (AI) has made its way into many industries around the world. But the truth is, it has just begun its odyssey toward cheaper, better, and faster predictions to drive strategic business decisions-powering and accelerating business. When prediction is taken to the max, industries transform. The disruption that comes with such transformation is yet to be felt-but it is coming. How do businesses prepare? In their bestselling first book, Prediction Machines, eminent economists Ajay Agrawal, Joshua Gans, and Avi Goldfarb explained the simple yet game-changing economics of AI. Now, in Power and Prediction, they go further to reveal AI as a prediction technology directly impacting decision-making and to teach businesses how to identify disruptive opportunities and threats resulting from AI. Their exhaustive study of new developments in artificial intelligence and the past history of how technologies have disrupted industries highlights the striking phase we are now in: after witnessing the power of this new technology and before its widespread adoption-what they call \"the Between Times.\" While there continue to be important opportunities for businesses, there are also threats of disruption. As prediction machines improve, old ways of doing things will be upended. Also, the process by which AI filters into the many systems involved in application is very uneven. That process will have winners and losers. How can businesses leverage, or protect, their positions? Filled with illuminating insights, rich examples, and practical advice, Power and Prediction is the must-read guide for any business leader or policy maker on how to make the coming AI disruptions work for you rather than against you\"-- Provided by publisher.