Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Goldsmith, Jason R."
Sort by:
The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications
2014
Dietary impacts on health may be one of the oldest concepts in medicine; however, only in recent years have technical advances in mass spectroscopy, gnotobiology, and bacterial sequencing enabled our understanding of human physiology to progress to the point where we can begin to understand how individual dietary components can affect specific illnesses. This review explores the current understanding of the complex interplay between dietary factors and the host microbiome, concentrating on the downstream implications on host immune function and the pathogenesis of disease. We discuss the influence of the gut microbiome on body habitus and explore the primary and secondary effects of diet on enteric microbial community structure. We address the impact of consumption of non-digestible polysaccharides (prebiotics and fiber), choline, carnitine, iron, and fats on host health as mediated by the enteric microbiome. Disease processes emphasized include non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, IBD, and cardiovascular disease/atherosclerosis. The concepts presented in this review have important clinical implications, although more work needs to be done to develop fully and validate potential therapeutic approaches. Specific dietary interventions offer exciting potential for nontoxic, physiologic ways to alter enteric microbial structure and metabolism to benefit the natural history of many intestinal and systemic disorders.
Journal Article
Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins
2017
The TIPE (tumor necrosis factor-α-induced protein 8-like) family are newly described regulators of immunity and tumorigenesis consisting of four highly homologous mammalian proteins: TNFAIP8 (tumor necrosis factor-α-induced protein 8), TIPE1 (TNFAIP8-like 1, or TNFAIP8L1), TIPE2 (TNFAIP8L2) and TIPE3 (TNFAIP8L3). They are the only known transfer proteins of the lipid secondary messengers PIP2 (phosphatidylinositol 4,5-bisphosphate) and PIP3 (phosphatidylinositol 3,4,5-trisphosphate). Cell-surface receptors, such as G-protein-coupled receptors and receptor tyrosine kinases, regulate inflammation and cancer via several signaling pathways, including the nuclear factor (NF)-κB and phosphoinositide-3 kinase (PI3K) pathways, the latter of which is upstream of both Akt and STAT3 activation. An expression analysis in humans demonstrated that the TIPE family is dysregulated in cancer and inflammation, and studies both in mice and
in vitro
have demonstrated that this family of proteins plays a critical role in tumorigenesis and inflammatory responses. In this review, we summarize the current literature for all four family members, with a special focus on the phenotypic manifestations present in the various knockout murine strains, as well as the related cell signaling that has been elucidated to date.
Journal Article
TNFAIP8 controls murine intestinal stem cell homeostasis and regeneration by regulating microbiome-induced Akt signaling
2020
The intestine is a highly dynamic environment that requires tight control of the various inputs to maintain homeostasis and allow for proper responses to injury. It was recently found that the stem cell niche and epithelium is regenerated after injury by de-differentiated adult cells, through a process that gives rise to Sca1+ fetal-like cells and is driven by a transient population of Clu
+
revival stem cells (revSCs). However, the molecular mechanisms that regulate this dynamic process have not been fully defined. Here we show that TNFAIP8 (also known as TIPE0) is a regulator of intestinal homeostasis that is vital for proper regeneration. TIPE0 functions through inhibiting basal Akt activation by the commensal microbiota via modulating membrane phospholipid abundance. Loss of TIPE0 in mice results in injury-resistant enterocytes, that are hyperproliferative, yet have regenerative deficits and are shifted towards a de-differentiated state.
Tipe0
−/−
enterocytes show basal induction of the Clu
+
regenerative program and a fetal gene expression signature marked by Sca1, but upon injury are unable to generate Sca-1
+
/Clu
+
revSCs and could not regenerate the epithelium. This work demonstrates the role of TIPE0 in regulating the dynamic signaling that determines the injury response and enables intestinal epithelial cell regenerative plasticity.
The molecular mechanisms that regulate intestinal Clu+ revival stem cells (revSCs) and their niche to enable regeneration in response to injury are unclear. Here, the authors show that mice without the phospholipid transport protein, TNFAIP8, causes less revSCs to be induced following injury.
Journal Article
TNFAIP8 Regulates Intestinal Epithelial Cell Differentiation and May Alter Terminal Differentiation of Secretory Progenitors
by
Hood, Ryan
,
Goldsmith, Jason R.
,
Chen, Youhai H.
in
1-Phosphatidylinositol 3-kinase
,
Animals
,
Apoptosis Regulatory Proteins - deficiency
2021
The intestine is a highly proliferative dynamic environment that relies on constant self-renewal of the intestinal epithelium to maintain homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8 or TIPE0) is a regulator of PI3K-mediated signaling. By binding to PIP2 and PIP3, TIPE family members locally activate PI3K activity while globally inhibiting PI3K activity through sequestration of membranous PIP2. Single-cell RNA sequencing survey of Tipe0−/− small intestine was used to investigate the role of TIPE0 in intestinal differentiation. Tipe0−/− intestinal cells were shown to shift towards an undifferentiated state, with the notable exception of goblet cells. Additionally, three possible novel regulators of terminal cell fate decisions in the secretory lineage were identified: Nupr1, Kdm4a, and Gatad1. We propose that these novel regulators drive changes involved in goblet cell (Nupr1) or tuft cell (Kdm4a and Gatad1) fate commitment and that TIPE0 may play a role in orchestrating terminal differentiation.
Journal Article
Oxymatrine Prevents NF-κB Nuclear Translocation And Ameliorates Acute Intestinal Inflammation
by
Goldsmith, Jason R.
,
Mühlbauer, Marcus
,
Koo, Ja Seol
in
631/154/349
,
631/250/256/2516
,
631/80/86
2013
Oxymatrine is a traditional Chinese herbal product that exhibits anti-inflammatory effects in models of heart, brain and liver injury. We investigated the impact of oxymatrine in an acute model of intestinal injury and inflammation. Oxymatrine significantly decreased LPS-induced NF-κB-driven luciferase activity, correlating with diminished induction of
Cxcl2
,
Tnfα
and
Il6
mRNA expression in rat IEC-6 and murine BMDC. Although oxymatrine decreased LPS-induced p65 nuclear translocation and binding to the
Cxcl2
gene promoter, this effect was independent of IκBα degradation/phosphorylation. DSS-induced weight loss and histological damage were ameliorated in oxymatrine-treated C57BL/6-WT-mice. While this effect correlated with reduced colonic
Il6
and
Il1β
mRNA accumulation, global NF-κB activity as measured in NF-κB
EGFP
mice was unaffected. Our data demonstrate that oxymatrine reduces LPS-induced NF-κB nuclear translocation and activity independently of IκBα status, prevents intestinal inflammation through blockade of inflammatory signaling and ameliorates overall intestinal inflammation
in vivo
.
Journal Article
Glafenine-induced intestinal injury in zebrafish is ameliorated by μ-opioid signaling via enhancement of Atf6-dependent cellular stress responses
by
Goldsmith, Jason R
,
Cocchiaro, Jordan L
,
Rawls, John F
in
Activating Transcription Factor 6 - metabolism
,
Animals
,
Anti-inflammatory agents
2013
Beside their analgesic properties, opiates exert beneficial effects on the intestinal wound healing response. In this study, we investigated the role of μ-opioid receptor (MOR) signaling on the unfolded protein response (UPR) using a novel zebrafish model of NSAID-induced intestinal injury. The NSAID glafenine was administered to zebrafish larvae at 5 days post-fertilization (dpf) for up to 24 hours in the presence or absence of the MOR-specific agonist DALDA. By analysis with histology, transmission electron microscopy and vital dye staining, glafenine-treated zebrafish showed evidence of endoplasmic reticulum and mitochondrial stress, with disrupted intestinal architecture and halted cell stress responses, alongside accumulation of apoptotic intestinal epithelial cells in the lumen. Although the early UPR marker BiP was induced with glafenine-induced injury, downstream atf6 and s-xbp1 expression were paradoxically not increased, explaining the halted cell stress responses. The μ-opioid agonist DALDA protected against glafenine-induced injury through induction of atf6-dependent UPR. Our findings show that DALDA prevents glafenine-induced epithelial damage through induction of effective UPR.
Journal Article
Direction of leukocyte polarization and migration by the phosphoinositide-transfer protein TIPE2
2017
The polarization of leukocytes toward chemoattractants is essential for their directed migration. Chen and colleagues show that the phosphoinositide-transfer protein TIPE2 functions as a coordinator of leukocyte polarity.
The polarization of leukocytes toward chemoattractants is essential for the directed migration (chemotaxis) of leukocytes. How leukocytes acquire polarity after encountering chemical gradients is not well understood. We found here that leukocyte polarity was generated by TIPE2 (TNFAIP8L2), a transfer protein for phosphoinositide second messengers. TIPE2 functioned as a local enhancer of phosphoinositide-dependent signaling and cytoskeleton remodeling, which promoted leading-edge formation. Conversely, TIPE2 acted as an inhibitor of the GTPase Rac, which promoted trailing-edge polarization. Consequently, TIPE2-deficient leukocytes were defective in polarization and chemotaxis, and TIPE2-deficient mice were resistant to leukocyte-mediated neural inflammation. Thus, the leukocyte polarizer is a dual-role phosphoinositide-transfer protein and represents a potential therapeutic target for the treatment of inflammatory diseases.
Journal Article
TIPE2 Promotes Tumor Initiation But Inhibits Tumor Progression in Murine Colitis-Associated Colon Cancer
by
Hood, Ryan
,
Tian, Yuhua
,
Chen, Youhai H
in
Animals
,
Azoxymethane - toxicity
,
Basic Science Research
2022
Abstract
Background
Colorectal cancer (CRC) is the third leading cause of cancer in the United States, and inflammatory bowel disease patients have an increased risk of developing CRC due to chronic intestinal inflammation with it being the cause of death in 10% to 15% of inflammatory bowel disease patients. TIPE2 (TNF-alpha-induced protein 8-like 2) is a phospholipid transporter that is highly expressed in immune cells and is an important regulator of immune cell function.
Methods
The azoxymethane/dextran sulfate sodium murine model of colitis-associated colon cancer (CAC) was employed in Tipe2 –/– and wild-type mice, along with colonoid studies, to determine the role of TIPE2 in CAC.
Results
Early on, loss of TIPE2 led to significantly less numbers of visible tumors, which was in line with its previously described role in myeloid-derived suppressor cells. However, as time went on, loss of TIPE2 promoted tumor progression, with larger tumors appearing in Tipe2 –/– mice. This was associated with increased interleukin-22/STAT3 phosphorylation signaling. Similar effects were also observed in primary colonoid cultures, together demonstrating that TIPE2 also directly regulated colonocytes in addition to immune cells.
Conclusions
This work demonstrates that TIPE2 has dual effects in CAC. In the colonocytes, it works as a tumor suppressor. However, in the immune system, TIPE2 may promote tumorigenesis through suppressor cells or inhibit it through IL-22 secretion. Going forward, this work suggests that targeting TIPE2 for CRC therapy requires cell- and pathway-specific approaches and serves as a cautionary tale for immunotherapy approaches in general in terms of colon cancer, as intestinal inflammation can both promote and inhibit cancer.
Lay Summary
TIPE2 (TNF-alpha-induced protein 8-like 2) regulates immune function. Here, we find that it differentially regulates the initiation and progression of its immunoregulatory properties affect murine colitis-associated colon cancer initiation and progression. Surprisingly, we found that TIPE2 a novel tumor suppressor in enterocytes, a cell compartment it was not previously known to directly regulate.
Journal Article
Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins
2017
This corrects the article DOI: 10.1038/cmi.2017.4.
Journal Article