Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
88 result(s) for "Goloub, Philippe"
Sort by:
Large Contribution of Meteorological Factors to Inter-Decadal Changes in Regional Aerosol Optical Depth
Aerosol optical depth (AOD) has become a crucial metric for assessing global climate change. Although global and regional AOD trends have been studied extensively, it remains unclear what factors are driving the inter-decadal variations in regional AOD and how to quantify the relative contribution of each dominant factor. This study used a long-term (1980–2016) aerosol dataset from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis, along with two satellite-based AOD datasets (MODIS/Terra and MISR) from 2001 to 2016, to investigate the long-term trends in global and regional aerosol loading. Statistical models based on emission factors and meteorological parameters were developed to identify the main factors driving the inter-decadal changes of regional AOD and to quantify their contribution. Evaluation of the MERRA-2 AOD with the ground-based measurements of AERONET indicated significant spatial agreement on the global scale (r= 0.85, root-mean-square error = 0.12, mean fractional error = 38.7 %, fractional gross error = 9.86 % and index of agreement = 0.94). However, when AOD observations from the China Aerosol Remote Sensing Network (CARSNET) were employed for independent verification, the results showed that MERRA-2 AODs generally underestimated CARSNET AODs in China (relative mean bias = 0.72 and fractional gross error =−34.3 %). In general, MERRA-2 was able to quantitatively reproduce the annual and seasonal AOD trends on both regional and global scales, as observed by MODIS/Terra, although some differences were found when compared to MISR. Over the 37-year period in this study, significant decreasing trends were observed over Europe and the eastern United States. In contrast, eastern China and southern Asia showed AOD increases, but the increasing trend of the former reversed sharply in the most recent decade. The statistical analyses suggested that the meteorological parameters explained a larger proportion of the AOD variability (20.4 %–72.8 %) over almost all regions of interest (ROIs) during 1980–2014 when compared with emission factors (0 %–56 %). Further analysis also showed that SO2 was the dominant emission factor, explaining 12.7 %–32.6 % of the variation in AOD over anthropogenic-aerosol-dominant regions, while black carbon or organic carbon was the leading factor over the biomass-burning-dominant (BBD) regions, contributing 24.0 %–27.7 % of the variation. Additionally, wind speed was found to be the leading meteorological parameter, explaining 11.8 %–30.3 % of the variance over the mineral-dust-dominant regions, while ambient humidity (including soil moisture and relative humidity) was the top meteorological parameter over the BBD regions, accounting for 11.7 %–35.5 % of the variation. The results of this study indicate that the variation in meteorological parameters is a key factor in determining the inter-decadal change in regional AOD.
Spatial Distribution of Aerosol Microphysical and Optical Properties and Direct Radiative Effect from the China Aerosol Remote Sensing Network
Multi-year observations of aerosol microphysical and optical properties, obtained through ground-based remote sensing at 50 China Aerosol Remote Sensing Network (CARSNET) sites, were used to characterize the aerosol climatology for representative remote, rural, and urban areas over China to assess effects on climate. The annual mean effective radii for total particles (ReffT) decreased from north to south and from rural to urban sites, and high total particle volumes were found at the urban sites. The aerosol optical depth at 440 nm (AOD440 nm) increased from remote and rural sites (0.12) to urban sites (0.79), and the extinction Ångström exponent (EAE440–870 nm) increased from 0.71 at the arid and semi-arid sites to 1.15 at the urban sites, presumably due to anthropogenic emissions. Single-scattering albedo (SSA440 nm) ranged from 0.88 to 0.92, indicating slightly to strongly absorbing aerosols. Absorption AOD440 nm values were 0.01 at the remote sites versus 0.07 at the urban sites. The average direct aerosol radiative effect (DARE) at the bottom of atmosphere increased from the sites in the remote areas (−24.40 W m−2) to the urban areas (−103.28 W m−2), indicating increased cooling at the latter. The DARE for the top of the atmosphere increased from −4.79 W m−2 at the remote sites to −30.05 W m−2 at the urban sites, indicating overall cooling effects for the Earth–atmosphere system. A classification method based on SSA440 nm, fine-mode fraction (FMF), and EAE440–870 nm showed that coarse-mode particles (mainly dust) were dominant at the rural sites near the northwestern deserts, while light-absorbing, fine-mode particles were important at most urban sites. This study will be important for understanding aerosol climate effects and regional environmental pollution, and the results will provide useful information for satellite validation and the improvement of climate modelling.
The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China
The Taklamakan desert is an important dust source for the global atmospheric dust budget and a cause of the dust weather in East Asia. The characterization of Taklamakan dust in the source region is still very limited. To fill this gap, the DAO (dust aerosol observation) was conducted in April 2019 in Kashi, China. The Kashi site is about 150 km from the western rim of the Taklamakan desert and is strongly impacted by desert dust aerosols, especially in spring time, i.e., April and May. According to sun–sky photometer measurements, the aerosol optical depth (at 500 nm) varied in the range of 0.07–4.70, and the Ångström exponent (between 440 and 870 nm) in the range of 0.0–0.8 in April 2019. In this study, we provide the first profiling of the 2α+3β+3δ parameters of Taklamakan dust based on a multiwavelength Mie–Raman polarization lidar. For Taklamakan dust, the Ångström exponent related to the extinction coefficient (EAE, between 355 and 532 nm) is about 0.01 ± 0.30, and the lidar ratio is found to be 45 ± 7 sr (51 ± 8–56 ± 8 sr) at 532 (355) nm. The particle linear depolarization ratios (PLDRs) are about 0.28–0.32 ± 0.07 at 355 nm, 0.36 ± 0.05 at 532 nm and 0.31 ± 0.05 at 1064 nm. Both lidar ratios and depolarization ratios are higher than the typical values of Central Asian dust in the literature. The difference is probably linked to the fact that observations in the DAO campaign were collected close to the dust source; therefore, there is a large fraction of coarse-mode and giant particles (radius >20 µm) in the Taklamakan dust. Apart from dust, fine particles coming from local anthropogenic emissions and long-range transported aerosols are also non-negligible aerosol components. The signatures of pollution emerge when dust concentration decreases. The polluted dust (defined by PLDR532≤0.30 and EAE355-532≥0.20) is featured with reduced PLDRs and enhanced EAE355−532 compared to Taklamakan dust. The mean PLDRs of polluted dust generally distributed in the range of 0.20–0.30. Due to the complexity of the nature of the involved pollutants and their mixing state with dust, the lidar ratios exhibit larger variabilities compared to those of dust. The study provides the first reference of novel characteristics of Taklamakan dust measured by Mie–Raman polarization lidar. The data could contribute to complementing the dust model and improving the accuracy of climate modeling.
Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France
Long-range-transported Canadian smoke layers in the stratosphere over northern France were detected by three lidar systems in August 2017. The peaked optical depth of the stratospheric smoke layer exceeds 0.20 at 532 nm, which is comparable with the simultaneous tropospheric aerosol optical depth. The measurements of satellite sensors revealed that the observed stratospheric smoke plumes were transported from Canadian wildfires after being lofted by strong pyro-cumulonimbus. Case studies at two observation sites, Lille (lat 50.612, long 3.142, 60 m a.s.l.) and Palaiseau (lat 48.712, long 2.215, 156 m a.s.l.), are presented in detail. Smoke particle depolarization ratios are measured at three wavelengths: over 0.20 at 355 nm, 0.18–0.19 at 532 nm, and 0.04–0.05 at 1064 nm. The high depolarization ratios and their spectral dependence are possibly caused by the irregular-shaped aged smoke particles and/or the mixing with dust particles. Similar results are found by several European lidar stations and an explanation that can fully resolve this question has not yet been found. Aerosol inversion based on lidar 2α+3β data derived a smoke effective radius of about 0.33 µm for both cases. The retrieved single-scattering albedo is in the range of 0.8 to 0.9, indicating that the smoke plumes are absorbing. The absorption can cause perturbations to the temperature vertical profile, as observed by ground-based radiosonde, and it is also related to the ascent of the smoke plumes when exposed in sunlight. A direct radiative forcing (DRF) calculation is performed using the obtained optical and microphysical properties. The calculation revealed that the smoke plumes in the stratosphere can significantly reduce the radiation arriving at the surface, and the heating rate of the plumes is about 3.5 K day−1. The study provides a valuable characterization for aged smoke in the stratosphere, but efforts are still needed in reducing and quantifying the errors in the retrieved microphysical properties as well as radiative forcing estimates.
Variability of Lidar-Derived Particle Properties Over West Africa Due to Changes in Absorption: Towards an Understanding
Measurements performed in western Africa (Senegal) during the SHADOW field campaign are analyzed to show that spectral dependence of the imaginary part of the complex refractive index (CRI) of dust can be revealed by lidar-measured particle parameters. Observations in April 2015 provide good opportunity for such study, because, due to high optical depth of the dust, exceeding 0.5, the extinction coefficient could be derived from lidar measurements with high accuracy and the contribution of other aerosol types, such as biomass burning, was negligible. For instance, in the second half of April 2015, AERONET observations demonstrated a temporal decrease in the imaginary part of the CRI at 440 nm from approximately 0.0045 to 0.0025. This decrease is in line with a change in the relationship between the lidar ratios (the extinction-to-backscattering ratio) at 355 and 532 nm (S(355) and S(532)). For instance in the first half of April, S(355)∕S(532) is as high as 1.5 and the backscatter Angstrom exponent, A(β), is as low as −0.75, while after 15 April S(355)/S(532)=1.0 and A(β) is close to zero. The aerosol depolarization ratio δ(532) for the whole of April exceeded 30 % in the height range considered, implying that no other aerosol, except dust, occurred. The performed modeling confirmed that the observed S(355)∕S(532) and Aβ values match the spectrally dependent imaginary part of the refractive index as can be expected for mineral dust containing iron oxides. The second phase of the SHADOW campaign was focused on evaluation of the lidar ratio of smoke and estimates of its dependence on relative humidity (RH). For five studied smoke episodes the lidar ratio increases from 44±5 to 66±7 sr at 532 nm and from 62±6 to 80±8 sr at 355 nm, when RH varied from 25 % to 85 %. Performed numerical simulations demonstrate that observed ratio S(355)∕S(532), exceeding 1.0 in the smoke plumes, can indicate an increase in the imaginary part of the smoke particles in the ultraviolet (UV) range.
Retrieval of Aerosol Microphysical Properties from Multi-Wavelength Mie–Raman Lidar Using Maximum Likelihood Estimation: Algorithm, Performance, and Application
Lidar plays an essential role in monitoring the vertical variation of atmospheric aerosols. However, due to the limited information that lidar measurements provide, ill-posedness still remains a big challenge in quantitative lidar remote sensing. In this study, we describe the Basic algOrithm for REtrieval of Aerosol with Lidar (BOREAL), which is based on maximum likelihood estimation (MLE), and retrieve aerosol microphysical properties from extinction and backscattering measurements of multi-wavelength Mie–Raman lidar systems. The algorithm utilizes different types of a priori constraints to better constrain the solution space and suppress the influence of the ill-posedness. Sensitivity test demonstrates that BOREAL could retrieve particle volume size distribution (VSD), total volume concentration (Vt), effective radius (Reff), and complex refractive index (CRI = n − ik) of simulated aerosol models with satisfying accuracy. The application of the algorithm to real aerosol events measured by LIlle Lidar AtmosphereS (LILAS) shows it is able to realize fast and reliable retrievals of different aerosol scenarios (dust, aged-transported smoke, and urban aerosols) with almost uniform and simple pre-settings. Furthermore, the algorithmic principle allows BOREAL to incorporate measurements with different and non-linearly related errors to the retrieved parameters, which makes it a flexible and generalized algorithm for lidar retrieval.
Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the LILAS multiwavelength Mie–Raman lidar of Lille University, France. A part of the fluorescence spectrum induced by 355 nm laser radiation is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has proved to have high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected and the fluorescence backscattering coefficient from the ratio of fluorescence and nitrogen Raman backscatters to be calculated. Observations were performed during the November 2019–February 2020 period. The fluorescence capacity (ratio of fluorescence to elastic backscattering coefficients), measured under conditions of low relative humidity, varied in a wide range, being the highest for the smoke and the lowest for the dust particles. The results presented also demonstrate that the fluorescence measurements can be used for monitoring the aerosol inside the cloud layers.
Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France
The multiwavelength Mie–Raman–fluorescence lidar of the University of Lille has the capability to measure three aerosol backscattering coefficients, two extinction coefficients and three linear depolarization ratios, together with fluorescence backscattering at 466 nm. It was used to characterize aerosols during the pollen season in the north of France for the period March–June 2020. The results of observations demonstrate that the presence of pollen grains in aerosol mixture leads to an increase in the depolarization ratio. Moreover, the depolarization ratio exhibits a strong spectral dependence increasing with wavelength, which is expected for the mixture containing fine background aerosols with low depolarization and strongly depolarizing pollen grains. A high depolarization ratio correlates with the enhancement of the fluorescence backscattering, corroborating the presence of pollen grains. Obtained results demonstrate that simultaneous measurements of particle depolarization and fluorescence allows for the separation of dust, smoke particles and aerosol mixtures containing the pollen grains.
Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network
This paper introduced the calibration of the CE‐318 sunphotometer of the China Aerosol Remote Sensing Network (CARSNET) and the validation of aerosol optical depth (AOD) by AOD module of ASTPWin software compared with the simultaneous measurements of the Aerosol Robotic Network (AERONET)/Photométrie pour le Traitement Opérationnel de Normalization Satellitaire (PHOTONS) and PREDE skyradiometer. The results show that the CARSNET AOD measurements have the same accuracy as the AERONET/PHOTONS. On the basis of a comparison between CARSNET and AERONET, the AODs from CARSNET at 1020, 870, 670, and 440 nm are about 0.03, 0.01, 0.01, and 0.01 larger than those from AERONET, respectively. The aerosol optical properties over Beijing acquired through the CE‐318 sunphotometers of one AERONET/PHOTONS site and two CARSNET sites were analyzed on the basis of 4‐year measurements. It was obvious that the AOD of the Shangdianzi site (rural site) was lower than that of the two urban sites (the Institute of Atmospheric Physics (IAP) site (north urban site) and the Beijing Meteorological Observatory (BJO) site (south urban site)). The AOD of BJO was about 0.05, 0.04, 0.05, and 0.06 larger than that of IAP at 1020, 870, 670, and 440 nm, respectively, indicating that there is more local pollution in the south part of Beijing. The highest AOD was found in summer because of the stagnation planetary boundary layer and transport of pollutants from large pollution centers south of Beijing. The high temperature and relative humidity in summer also favor the production of aerosol precursor and the hygroscopic growth of the existing particles locally, which results in high AOD. In contrast, the lowest AOD at the two urban sites and one rural site in Beijing occurred in winter as the frequent cold air masses help pollutants diffuse easily.
Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend
Aerosols are essential climate variables that need to be observed at a global scale to monitor the evolution of the atmospheric composition and potential climate impacts. We used the measurements performed over the May 2007–December 2019 period by a ground-based sun photometer installed at the island of La Réunion (21°S, 55°E), together with a linear regression fitting model, to assess the climatology and types of aerosols reaching this observation site located in a sparsely documented pristine area, and the forcings responsible for the variability of the observed aerosol optical depth (AOD) and related trend. The climatology of the aerosol optical depth (AOD) at 440 nm (AOD440) and Ångström exponent between 500 and 870 nm (α) revealed that sea salts could be considered as the La Réunion AOD440 and α baselines (0.06 ± 0.03 and 0.61 ± 0.40, respectively, from December to August), which were mainly modulated by biomass burning (BB) plumes passing over La Réunion (causing a doubling of AOD440 and α up to 0.13 ± 0.07 and 1.06 ± 0.34, respectively, in October). This was confirmed by the retrieved aerosol volume size distributions showing that the coarse-mode (fine-mode) dominated the total volume concentration for AOD440 lower (higher) than 0.2 with a mean radius equal to 3 μm (0.15 μm). The main contribution to the AOD440 variability over La Réunion was evaluated to be the BB activity (67.4 ± 28.1%), followed by marine aerosols (16.3 ± 4.2%) and large-scale atmospheric structures (5.5 ± 1.7%). The calculated trend for AOD440 equaled 0.02 ± 0.01 per decade (2.6 ± 1.3% per year). These results provide a scientific reference base for upcoming studies dedicated to the quantification of the impact of wildfire emissions on the southwestern Indian Ocean’s atmospheric composition and radiative balance.