Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Gombe, Ben"
Sort by:
Optimisation and Validation of a conventional ELISA and cut-offs for detecting and quantifying anti-SARS-CoV-2 Spike, RBD, and Nucleoprotein IgG, IgM, and IgA antibodies in Uganda
There is an urgent need for better immunoassays to measure antibody responses as part of immune-surveillance activities and to profile immunological responses to emerging SARS-CoV-2 variants. We optimised and validated an in-house conventional ELISA to identify and quantify SARS-CoV-2 spike- (S-), receptor binding domain- (RBD-), and nucleoprotein- (N-) directed IgG, IgM, and IgA binding antibodies in the Ugandan population and similar settings. Pre- and post-pandemic specimens were used to compare the utility of mean ± 2SD, mean ± 3SD, 4-fold above blanks, bootstrapping, and receiver operating characteristic (ROC) analyses in determining optimal cut-off optical densities at 450 nm (OD) for discriminating between antibody positives and negatives. “Limits of detection” (LOD) and “limits of quantitation” (LOQ) were validated alongside the assay’s uniformity, accuracy, inter-assay and inter-operator precision, and parallelism. With spike-directed sensitivity and specificity of 95.33 and 94.15%, respectively, and nucleoprotein sensitivity and specificity of 82.69 and 79.71%, ROC was chosen as the best method for determining cutoffs. Accuracy measurements were within the expected CV range of 25%. Serum and plasma OD values were highly correlated (r = 0.93, p=0.0001). ROC-derived cut-offs for S-, RBD-, and N-directed IgG, IgM, and IgA were 0.432, 0.356, 0.201 (S), 0.214, 0.350, 0.303 (RBD), and 0.395, 0.229, 0.188 (N). The sensitivity and specificity of the S-IgG cut-off were equivalent to the WHO 20/B770-02 S-IgG reference standard at 100% level. Spike negative IgG, IgM, and IgA ODs corresponded to median antibody concentrations of 1.49, 3.16, and 0 BAU/mL, respectively, consistent with WHO low titre estimates. Anti-spike IgG, IgM, and IgA cut-offs were equivalent to 18.94, 20.06, and 55.08 BAU/mL. For the first time, we provide validated parameters and cut-off criteria for the in-house detection of subclinical SARS-CoV-2 infection and vaccine-elicited binding antibodies in the context of Sub-Saharan Africa and populations with comparable risk factors.
Persistent and robust antibody responses to ChAdOx1-S Oxford-AstraZeneca (ChAdOx1-S, Covishield) SARS-CoV-2 vaccine observed in Ugandans across varied baseline immune profiles
Understanding SARS-CoV-2 vaccine-induced antibody responses in varied antigenic and serological prior exposures can guide optimal vaccination strategies for enhanced immunogenicity. We evaluated spike (S)-directed IgG, IgM, and IgA antibody optical densities (ODs) and concentrations to the two-dose ChAdOx1-S Oxford-AstraZeneca (ChAdOx1-S, Covishield) SARS-CoV-2 vaccine in 67 Ugandans, categorised by prior infection and baseline S-IgG histories: uninfected and S-IgG-negative (n = 12); previously infected yet S-IgG-negative (n = 17); and previously infected with S-IgG-positive status (n = 38). Antibody dynamics were compared across eight timepoints from baseline till nine months. S-IgG antibodies remained consistently potent across all groups. Individuals with prior infections maintained robust S-IgG levels, underscoring the endurance of hybrid immunity. In contrast, those without prior exposure experienced an initial surge in S-IgG after the primary dose but no subsequent significant increase post-boost. However, they reached levels parallel to the previously exposed groups. S-IgM levels remained moderate, while S-IgA persisted in individuals with prior antigen exposure. ChAdOx1-S, Covishield vaccine elicited robust and sustained antibody responses in recipients, irrespective of their initial immune profiles. Hybrid immunity showed higher responses, aligning with global observations. Early post-vaccination antibody levels could predict long-term immunity, particularly in individuals without virus exposure. These findings can inform vaccine strategies and pandemic management.
Optimization and validation of an ELISA assay for the determination of antibody responses to CN54gp140 and AIDSVAX BE for use in the Phase IIb PrEPVacc vaccine trial
PrEPVacc is an international, multi-centre, double-blind vaccine study comparing experimental combination vaccine regimens including DNA/AIDSVAX BE and DNA/CN54gp140 with placebo control. Simultaneously, daily oral PrEP is compared for efficacy against daily Truvada in the context of the current PrEP availability situation at the study sites. An important clinical trial outcome is the accurate measurement of in vivo antibody titer induced through vaccination. Here we report the validation of two ELISAs for CN54gp140 and AIDSVAX BE at Uganda Virus Research Institute that demonstrates precision, specificity, and robustness for assessing the reciprocal antibody end point titer in human serum. This is a critical endpoint for determining whether vaccination can provide any protection against HIV in populations at risk of acquiring HIV.
Optimization and validation of an ELISA assay for the determination of antibody responses to CN54gp140 and AIDSVAX BE for use in the Phase IIb PrEPVacc vaccine trial
PrEPVacc is an international, multi-centre, double-blind vaccine study comparing experimental combination vaccine regimens including DNA/AIDSVAX BE and DNA/CN54gp140 with placebo control. Simultaneously, daily oral PrEP is compared for efficacy against daily Truvada in the context of the current PrEP availability situation at the study sites. An important clinical trial outcome is the accurate measurement of in vivo antibody titer induced through vaccination. Here we report the validation of two ELISAs for CN54gp140 and AIDSVAX BE at Uganda Virus Research Institute that demonstrates precision, specificity, and robustness for assessing the reciprocal antibody end point titer in human serum. This is a critical endpoint for determining whether vaccination can provide any protection against HIV in populations at risk of acquiring HIV.
Safety, tolerability, and immunogenicity of the ChAdOx1 RVF vaccine against Rift Valley fever among healthy adults in Uganda: a single-centre, single-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial
Rift Valley fever (RVF) is an outbreak-prone viral zoonosis, with no vaccine available for human use. We aimed to assess the safety, tolerability, and immunogenicity of the ChAdOx1 RVF candidate vaccine among healthy adults in an RVF-endemic setting in Uganda. We conducted a single-centre, single-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial in Masaka, southwestern Uganda. Healthy, non-pregnant adults aged 18–50 years who resided in the clinical site's service area, did not have serum antibodies against the RVF virus nucleoprotein, and had not previously received other adenovirus-vectored vaccines were eligible for inclusion. Participants were sequentially enrolled into three dose groups (group 1 [5·0 × 109 virus particles]; group 2 [2·5 × 1010 virus particles]; or group 3 [5·0 × 1010 virus particles]) and randomly assigned to vaccine or placebo in a 2:1 (group 1) or 5:1 (groups 2 and 3) ratio by use of permuted blocks. Participants received a single intramuscular dose of the ChAdOx1 RVF vaccine or saline placebo in the non-dominant deltoid. Participants were masked to the intervention administered; however, all study staff were unmasked. Coprimary outcomes were the number, proportion, and severity of local and systemic solicited reactogenicity adverse events within the first 7 days and of unsolicited adverse events within 28 days following vaccination in the vaccine and placebo groups, analysed by intention to treat. The secondary outcomes were humoral and cellular immunity to RVF virus glycoproteins. This trial is registered with ClinicalTrials.gov (NCT04672824) and is closed to recruitment. Between May 5, 2022, and Sept 29, 2022, 30 participants were enrolled, of whom 24 (80%) were men and six (20%) were women (median age 25 years [IQR 22–33]). Adverse events were mostly mild or moderate and self-limiting. Local solicited adverse events were reported in 17 (71%) of 24 vaccine recipients and in no placebo recipients. The most frequently reported local solicited adverse events were injection site pain (one [25%] of four in group 1, five [50%] of ten in group 2, and seven [70%] of ten in group 3); warmth (two [50%] in group 1, three [30%] in group 2, and two [20%] in group 3); and itching (none in group 1, three [30%] in group 2, and two [20%] in group 3). Systemic solicited adverse events were reported in 20 (83%) vaccine recipients and in five (83%) of six placebo recipients. The most commonly reported systemic solicited adverse events were chills (three [75%] of four vaccine recipients vs one [50%] of two placebo recipients) in group 1; fever (two [20%] of ten vs none) and myalgia (four [40%] vs none) in group 2; and fever (four [40%] of ten vs none), headache (six [60%] vs one [50%] of two), fatigue (seven [70%] vs one [50%]), and malaise (seven [70%] vs one [50%]) in group 3. No serious adverse events were reported. By day 14, neutralising antibodies were detected in three (75%) of four individuals in group 1, nine (90%) of ten in group 2, and nine (90%) of ten in group 3. Highest antibody responses were sustained at day 28 (ten [100%]) and at day 84 (nine [90%]) in group 3. By day 14, anti-Gn and Gc immunoglobulin G responses in group 3 preceded other doses, whereas interferon-γ T-cell responses peaked for all doses, preceding the antibody peaks. A single dose of ChAdOx1 RVF vaccine seemed to be safe, tolerable, and immunogenic in healthy adults in an RVF-endemic setting, eliciting humoral and cellular immunity. Further evaluation of the 5·0 × 1010 dose in larger and more diverse populations in areas susceptible to outbreaks is warranted. UK Department of Health and Social Care through the UK Vaccines Network.
Safety and Immunogenicity of a Modified Self-Amplifying Ribonucleic Acid (saRNA) Vaccine Encoding SARS-CoV-2 Spike Glycoprotein in SARS-CoV-2 Seronegative and Seropositive Ugandan Individuals
Background: The COVID-19 pandemic highlighted the need for innovative vaccine platforms that elicit durable immunity. Self-amplifying RNA (saRNA) vaccines offer rapid production and dose-sparing advantages over traditional mRNA platforms. In Uganda’s first SARS-CoV-2 vaccine trial (NCT04934111), we assessed the safety and immunogenicity of a saRNA vaccine encoding the SARS-CoV-2 spike (S) glycoprotein in seronegative and seropositive adults. Methods: This non-randomised phase 1 trial (December 2021–April 2022) enrolled 42 healthy adults (18–45 years), including 12 seronegative and 30 seropositive for SARS-CoV-2. Participants received two 5 μg doses of saRNA vaccine, four weeks apart. Reactogenicity was assessed using diary cards for seven days post-vaccination, and adverse events were monitored throughout the 24-week study. Binding and neutralising antibody levels were quantified using ELISA and pseudovirus neutralisation assays. Findings: The vaccine was well tolerated, with only mild-to-moderate adverse events, including fatigue, headache, and chills. No serious vaccine-related events occurred. Among seronegative participants, 91.6% seroconverted after two doses (median S-IgG: 3695 ng/mL, p < 0.001). In the seropositive participants, S-IgG rose modestly from 7496 to 11,028 ng/mL after the second dose. Neutralising titres increased modestly across WT, BA.2, and A.23.1 variants, with no significant differences between groups. Conclusion: The saRNA SARS-CoV-2 vaccine was safe and immunogenic, inducing robust spike glycoprotein-specific antibody responses, particularly in seronegative participants. This trial demonstrates the potential of saRNA vaccines for broader use.
Sustained S-IgG and S-IgA antibodies to Moderna’s mRNA-1273 vaccine in a Sub-Saharan African cohort suggests need for booster timing reconsiderations
This study sought to elucidate the long-term antibody responses to the Moderna mRNA-1273 COVID-19 vaccine within a Ugandan cohort, aiming to contribute to the sparse data on m-RNA vaccine immunogenicity in Sub-Saharan Africa. We tracked the development and persistence of the elicited antibodies in 19 participants aged 18 to 67, who received two doses of the mRNA-1273 vaccine. A validated enzyme-linked immunosorbent assay (ELISA) was used to quantify SARS-CoV-2-specific IgG, IgM, and IgA antibodies against the spike (S) and nucleoproteins (N). The study's temporal scope extended from the baseline to one year, capturing immediate and long-term immune responses. Statistical analyses were performed using the Wilcoxon test to evaluate changes in antibody levels across predetermined intervals with the Hochberg correction for multiple comparisons. Our results showed a significant initial rise in spike-directed IgG (S-IgG) and spike-directed IgA (S-IgA) levels, which remained elevated for the duration of the study. The S-IgG concentrations peaked 14 days afterboosting, while spike-directed IgM (S-IgM) levels were transient, aligning with their early response role. Notably, post-booster antibody concentrations did not significantly change. Prior S-IgG status influenced the post-priming S-IgA dynamics, with baseline S-IgG positive individuals maintaining higher S-IgA responses, a difference that did not reach statistical difference post-boost. Three instances of breakthrough infections: two among participants who exhibited baseline seropositivity for S-IgG, and one in a participant initially seronegative for S-IgG. In conclusion, the mRNA-1273 vaccine elicited robust and persistent S-IgG and S-IgA antibody responses, particularly after the first dose, indicating potential for long-term immunity. Prior viral exposure enhances post-vaccination S-IgA responses compared to naive individuals, which aligned with the prior-naïve, post-boost. The stable antibody levels observed post-booster dose, remaining high over an extended period, with no significant secondary rise, and no difference by baseline exposure, suggest that initial vaccination may sufficiently prime the immune system for prolonged protection in this population, allowing for potential to delay booster schedules as antibody responses remained high at the time of boosting. This finding calls for a reassessment of the booster dose scheduling in this demographic.
Seroprevalence and durability of antibody responses to AstraZeneca vaccination in Ugandans with prior mild or asymptomatic COVID-19: implications for vaccine policy
The duration and timing of immunity conferred by COVID-19 vaccination in sub-Saharan Africa are crucial for guiding pandemic policy interventions, but systematic data for this region is scarce. This study investigated the antibody response after AstraZeneca vaccination in COVID-19 convalescent Ugandans. We recruited 86 participants with a previous rt-PCR-confirmed mild or asymptomatic COVID-19 infection and measured the prevalence and levels of spike-directed IgG, IgM, and IgA antibodies at baseline, 14 and 28 days after the first dose (priming), 14 days after the second dose (boosting), and at six- and nine-months post-priming. We also measured the prevalence and levels of nucleoprotein-directed antibodies to assess breakthrough infections. Within two weeks of priming, vaccination substantially increased the prevalence and concentrations of spike-directed antibodies (p < 0.0001, Wilcoxon signed rank test), with 97.0% and 66% of vaccinated individuals possessing S-IgG and S-IgA antibodies before administering the booster dose. S-IgM prevalence changed marginally after the initial vaccination and barely after the booster, consistent with an already primed immune system. However, we also observed a rise in nucleoprotein seroprevalence, indicative of breakthroughs six months after the initial vaccination. Our results suggest that vaccination of COVID-19 convalescent individuals with the AstraZeneca vaccine induces a robust and differential spike-directed antibody response. The data highlights the value of vaccination as an effective method for inducing immunity in previously infected individuals and the importance of administering two doses to maintain protective immunity. Monitoring anti-spike IgG and IgA when assessing vaccine-induced antibody responses is suggested for this population; assessing S-IgM will underestimate the response. The AstraZeneca vaccine is a valuable tool in the fight against COVID-19. Further research is needed to determine the durability of vaccine-induced immunity and the potential need for booster doses.
The subdued post-boost spike-directed secondary IgG antibody response in Ugandan recipients of the Pfizer-BioNTech BNT162b2 vaccine has implications for local vaccination policies
This study aimed to delineate longitudinal antibody responses to the Pfizer-BioNTech BNT162b2 COVID-19 vaccine within the Ugandan subset of the Sub-Saharan African (SSA) demographic, filling a significant gap in global datasets. We enrolled 48 participants and collected 320 specimens over 12 months after the primary vaccination dose. A validated enzyme-linked immunosorbent assay (ELISA) was used to quantify SARS-CoV-2-specific IgG, IgM, and IgA antibody concentrations (ng/ml) and optical densities (ODs). Statistical analyses included box plots, diverging bar graphs, and the Wilcoxon test with Bonferroni correction. We noted a robust S-IgG response within 14 days of the primary vaccine dose, which was consistent with global data. There was no significant surge in S-IgG levels after the booster dose, contrasting trends in other global populations. The S-IgM response was transient and predominantly below established thresholds for this population, which reflects its typical early emergence and rapid decline. S-IgA levels rose after the initial dose then decreased after six months, aligning with the temporal patterns of mucosal immunity. Eleven breakthrough infections were noted, and all were asymptomatic, regardless of the participants' initial S-IgG serostatus, which suggests a protective effect from vaccination. The Pfizer-BioNTech BNT162b2 COVID-19 vaccine elicited strong S-IgG responses in the SSA demographic. The antibody dynamics distinctly differed from global data highlighting the significance of region-specific research and the necessity for customised vaccination strategies.
Pre-pandemic SARS-CoV-2-specific IFN-γ and antibody responses were low in Ugandan samples and significantly reduced in HIV-positive specimens
We investigated whether prior SARS-CoV-2-specific IFN-γ and antibody responses in Ugandan COVID-19 pre-pandemic specimens aligned to this population's low disease severity. We used nucleoprotein (N), spike (S), NTD, RBD, envelope, membrane, SD1/2-directed IFN-γ ELISpots, and an S- and N-IgG antibody ELISA to screen for SARS-CoV-2-specific cross-reactivity. HCoV-OC43-, HCoV-229E-, and SARS-CoV-2-specific IFN-γ occurred in 23, 15, and 17 of 104 specimens, respectively. Cross-reactive IgG was more common against the nucleoprotein (7/110, 15.5%; p = 0.0016, Fishers' Exact) than the spike (3/110, 2.72%). Specimens lacking anti-HuCoV antibodies had higher rates of pre-epidemic SARS-CoV-2-specific IFN-γ cross-reactivity (p-value = 0.00001, Fishers' exact test), suggesting that exposure to additional factors not examined here might play a role. SARS-CoV-2-specific cross-reactive antibodies were significantly less common in HIV-positive specimens (p=0.017; Fishers' Exact test). Correlations between SARS-CoV-2- and HuCoV-specific IFN-γ responses were consistently weak in both HIV negative and positive specimens. These findings support the existence of pre-epidemic SARS-CoV-2-specific cellular and humoral cross-reactivity in this population. The data do not establish that these virus-specific IFN-γ and antibody responses are entirely specific to SARS-CoV-2. Inability of the antibodies to neutralise SARS-CoV-2 implies that prior exposure did not result in immunity. Correlations between SARS-CoV-2 and HuCoV-specific responses were consistently weak, suggesting that additional variables likely contributed to the pre-epidemic cross-reactivity patterns. The data suggests that surveillance efforts based on the nucleoprotein might overestimate the exposure to SARS-CoV-2 compared to inclusion of additional targets, like the spike protein. This study, while limited in scope, suggests that HIV-positive people are less likely than HIV-negative people to produce protective antibodies against SARS-CoV-2.