Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
88
result(s) for
"Gomes, Andreia C."
Sort by:
Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones
by
Santos, Jacqueline O.
,
Gomes, Andreia C.
,
Duarte, Maria F.
in
Animals
,
anti-inflammatory action
,
Anti-inflammatory agents
2022
Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.
Journal Article
Cyclosporin A-Loaded Poly( D,L -Lactide) Nanoparticles: A Promising Tool for Treating Alopecia
by
Matamá, Teresa
,
Gomes, Andreia C.
,
Fernandes, Bruno
in
Administration, Cutaneous
,
Alopecia
,
Alopecia - drug therapy
2020
Alopecia treatments are scarce and lack efficacy. Cyclosporin A (CsA) has hair growth-inducing properties but its poor cutaneous absorption undermines its use in topical treatments.
Development of a new potential topical treatment of alopecia with CsA.
CsA-loaded poly(d,l-lactide) (PLA) nanoparticles were obtained and characterized. Skin permeation was evaluated in
porcine skin.
Nanoparticles with good physicochemical stability increased CsA skin permeation/hair follicles accumulation, compared with a noncolloidal formulation. CsA biocompatibility in NCTC2455 keratinocytes (reference skin cell line) was clearly improved when encapsulated in PLA nanoparticles.
This work fosters further
investigation of CsA-loaded PLA nanoparticles as a promising new strategy to treat alopecia, a very traumatic, possibly autoimmune, disease.
Journal Article
Valorisation of the Invasive Macroalgae Undaria pinnatifida (Harvey) Suringar for the Green Synthesis of Gold and Silver Nanoparticles with Antimicrobial and Antioxidant Potential
by
Cavazza, Antonella
,
Fernandes, Mário
,
Sampaio, Paula
in
Algae
,
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
2023
Bacterial and fungal infections are a challenging global problem due to the reported increasing resistance of pathogenic microorganisms to conventional antimicrobials. Nanomaterials are a promising strategy to fight infections caused by multidrug-resistant microbes. In this work, gold (Au@UP) and silver (Ag@UP) nanoparticles were produced for the first time by green synthesis using an aqueous extract of the invasive macroalgae Undaria pinnatifida (UP). The nanoparticles were characterized by a wide range of physicochemical techniques. Au@UP and Ag@UP demonstrated to be spherical and crystalline with an average size of 6.8 ± 1.0 nm and 14.1 ± 2.8 nm, respectively. Carbohydrates and proteins of the UP extract may participate in the synthesis and capping of the nanoparticles. The UP extract, Ag@UP, and Au@UP were assessed for their antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Candida auris. Ag@UP showed the highest antimicrobial activity with very low MIC and MBC values for all the tested bacteria, and Au@UP demonstrated to be very effective against biofilm-producing bacteria. The antifungal properties of both Ag@UP and Au@UP were remarkable, inhibiting hyphae formation. This study points towards a very promising biomedical exploitation of this invasive brown algae.
Journal Article
EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy
by
Rijo, Patrícia
,
Silva, Catarina Oliveira
,
Petersen, Steffen B.
in
A549 Cells
,
Ablation
,
Absorption bands
2016
The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm) showed a plasmon absorption band located within the near-infrared range (650-900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.
Journal Article
Human Hair and the Impact of Cosmetic Procedures: A Review on Cleansing and Shape-Modulating Cosmetics
2016
Hair can be strategically divided into two distinct parts: the hair follicle, deeply buried in the skin, and the visible hair fiber. The study of the hair follicle is mainly addressed by biological sciences while the hair fiber is mainly studied from a physicochemical perspective by cosmetic sciences. This paper reviews the key topics in hair follicle biology and hair fiber biochemistry, in particular the ones associated with the genetically determined cosmetic attributes: hair texture and shape. The traditional and widespread hair care procedures that transiently or permanently affect these hair fiber features are then described in detail. When hair is often exposed to some particularly aggressive cosmetic treatments, hair fibers become damaged. The future of hair cosmetics, which are continuously evolving based on ongoing research, will be the development of more efficient and safer procedures according to consumers’ needs and concerns.
Journal Article
Nanotechnology Solutions for Controlled Cytokine Delivery: An Applied Perspective
by
Machado, Raul
,
Costa, André da
,
Gonçalves, Anabela
in
Alzheimer's disease
,
Biomarkers
,
Cancer
2020
Around 200 cytokines with roles in cell signaling have been identified and studied, with the vast majority belonging to the four-α-helix bundle family. These proteins exert their function by binding to specific receptors and are implicated in many diseases. The use of several cytokines as therapeutic targets has been approved by the FDA, however their rapid clearance in vivo still greatly limits their efficacy. Nano-based drug delivery systems have been widely applied in nanomedicine to develop safe, specific and controlled delivery techniques. Nevertheless, each nanomaterial has its own specifications and their suitability towards the biochemical and biophysical properties of the selected drug needs to be determined, weighing in the final choice of the ideal nano drug delivery system. Nanoparticles remain the most used vehicle for cytokine delivery, where polymeric carriers represent the vast majority of the studied systems. Liposomes and gold or silica nanoparticles are also explored and discussed in this review. Additionally, surface functionalization is of great importance to facilitate the attachment of a wide variety of molecules and modify features such as bioavailability. Since the monitoring of cytokine levels has an important role in early clinical diagnosis and for assessing therapeutic efficacy, nanotechnological advances are also valuable for nanosensor development.
Journal Article
Pre-clinical evaluation of a divalent liposomal vaccine to control invasive candidiasis
2025
Candida albicans
causes systemic infections with 20–50% mortality in critically ill and immunocompromised patients, despite antifungal treatment. Current therapies face limitations, including toxicity and resistance, underscoring the need for prophylactic vaccines. This study presents a novel divalent liposomal vaccine, delivering
C. albicans
Cht3 and Sap2 antigens. Vaccination induced protective Th1/Th17 immunity, a balanced Th1/Th2 ratio, antigen-specific antibodies, and boosted macrophage activity, improving survival in a mouse model of invasive candidiasis.
Journal Article
Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor
by
Diego-González, Lara
,
Guerra, Carmen
,
González-Fernández, África
in
Allografts
,
Apoptosis
,
Biocompatibility
2022
Pancreatic cancer evades most of the current therapies and there is an urgent need for new treatments that could efficiently eliminate this aggressive tumor, such as the blocking of routes driving cell proliferation. In this work, we propose the use of small interfering RNA (siRNA) to inhibit the combined expression of FOSL-1 and YAP, two signaling proteins related with tumor cell proliferation and survival. To improve the efficacy of cell transfection, DODAB:MO (1:2) liposomes were used as siRNA nanocarriers, forming a complex denominated siRNA-lipoplexes. Liposomes and lipoplexes (carrying two siRNA for each targeted protein, or the combination of four siRNAs) were physico-chemically and biologically characterized. They showed very good biocompatibility and stability. The efficient targeting of FOSL-1 and YAP expression at both mRNA and protein levels was first proved in vitro using mouse pancreatic tumoral cell lines (KRASG12V and p53 knockout), followed by in vivo studies using subcutaneous allografts on mice. The peri-tumoral injection of lipoplexes lead to a significant decrease in the tumor growth in both Athymic Nude-Foxn1nu and C57BL/6 mice, mainly in those receiving the combination of four siRNAs, targeting both YAP and FOSL-1. These results open a new perspective to overcome the fast tumor progression in pancreatic cancer.
Journal Article
Absence of Light Exposure Increases Pathogenicity of Pseudomonas aeruginosa Pneumonia-Associated Clinical Isolates
by
Gomes, Andreia C.
,
Santos, Pedro M.
,
Mesquita, Cristina S.
in
Abiotic factors
,
Adaptability
,
Antibiotics
2021
Pseudomonas aeruginosa can alter its lifestyle in response to changes in environmental conditions. The switch to a pathogenic host-associated lifestyle can be triggered by the luminosity settings, resorting to at least one photoreceptor which senses light and regulates cellular processes. This study aimed to address how light exposure affects the dynamic and adaptability of two P. aeruginosa pneumonia-associated isolates, HB13 and HB15. A phenotypic characterization of two opposing growth conditions, constant illumination and intensity of full-spectrum light and total absence of light, was performed. Given the nature of P. aeruginosa pathogenicity, distinct fractions were characterized, and its inherent pathogenic potential screened by comparing induced morphological alterations and cytotoxicity against human pulmonary epithelial cells (A549 cell line). Growth in the dark promoted some virulence-associated traits (e.g., pigment production, LasA proteolytic activity), which, together with higher cytotoxicity of secreted fractions, supported an increased pathogenic potential in conditions that better mimic the lung microenvironment of P. aeruginosa. These preliminary findings evidenced that light exposure settings may influence the P. aeruginosa pathogenic potential, likely owing to differential production of virulence factors. Thus, this study raised awareness towards the importance in controlling light conditions during bacterial pathogenicity evaluation approaches, to more accurately interpret bacterial responses.
Journal Article
Cationic Serine-Based Gemini Surfactant:Monoolein Aggregates as Viable and Efficacious Agents for DNA Complexation and Compaction: A Cytotoxicity and Physicochemical Assessment
2024
Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/−) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)2N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH2 spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)2N5:MO aggregates are non-cytotoxic up to 35–90 µM, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)2N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini–MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.
Journal Article