Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
91
result(s) for
"Gomes, Newton C. M"
Sort by:
The sponge microbiome within the greater coral reef microbial metacommunity
2019
Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.
Journal Article
Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting?
by
Gomes, Newton C. M
,
Calado, Ricardo
,
Leal, Miguel Costa
in
Animals
,
Aquatic Organisms - classification
,
Biodiversity
2012
It is acknowledged that marine invertebrates produce bioactive natural products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new marine drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new marine natural products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of Marine Natural Products covering 1990-2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new natural product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new natural products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new natural products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how marine invertebrates, which in some cases have no commercial value, may become highly valuable in the ongoing search for new drugs from the sea.
Journal Article
Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production
2014
Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL-1) and one was later treated with a phage lysate (∼108 PFU mL-1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture.
Journal Article
Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis
2013
Patricia Martins benefited from a PhD grant (SFRH/BD/73889/2010) provided by the Portuguese FCT (Fundação para a Ciência e Tecnologia). This study has been carried out with the financial support of project AQUASAFE - Development of new technologies to anticipate and diagnose disease outbreaks in aquaculture (PROMAR 31-03-05-FEP-0016) (PROMAR, a Portuguese instrument for the sectors of fisheries and aquaculture funded by the European Fisheries Fund). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Journal Article
Wavelength dependence of biological damage induced by UV radiation on bacteria
by
Gomes, Newton C. M
,
Cunha, Ângela
,
Henriques, Isabel
in
Bacteria
,
Bacteria - enzymology
,
Bacteria - genetics
2013
The biological effects of UV radiation of different wavelengths (UVA, UVB and UVC) were assessed in nine bacterial isolates displaying different UV sensitivities. Biological effects (survival and activity) and molecular markers of oxidative stress [DNA strand breakage (DSB), generation of reactive oxygen species (ROS), oxidative damage to proteins and lipids, and the activity of antioxidant enzymes catalase and superoxide dismutase] were quantified and statistically analyzed in order to identify the major determinants of cell inactivation under the different spectral regions. Survival and activity followed a clear wavelength dependence, being highest under UVA and lowest under UVC. The generation of ROS, as well as protein and lipid oxidation, followed the same pattern. DNA damage (DSB) showed the inverse trend. Multiple stepwise regression analysis revealed that survival under UVA, UVB and UVC wavelengths was best explained by DSB, oxidative damage to lipids, and intracellular ROS levels, respectively.
Journal Article
Taking root: enduring effect of rhizosphere bacterial colonization in mangroves
by
Gomes, Newton C. M
,
Cleary, Daniel F. R
,
Cunha, Ângela
in
Abundance
,
Bacteria
,
Bacteria - classification
2010
Background: Mangrove forests are of global ecological and economic importance, but are also one of the world’s most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants. M e t h o d o l o g y / P r i n c i p a l F i n d i n g s : A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment. Conclusions/Significance: In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments.
Journal Article
Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing
by
Gomes, Newton C. M
,
Cleary, Daniel F. R
,
Mendonça-Hagler, Leda C. S
in
Alphaproteobacteria
,
Alphaproteobacteria - genetics
,
Alphaproteobacteria - isolation & purification
2012
Here, we use DGGE fingerprinting and barcoded pyrosequencing data, at six cut-off levels (85-100%), of all bacteria, Alphaproteobacteria and Betaproteobacteria to assess composition in the rhizosphere of nursery plants and nursery-raised transplants, native plants and bulk sediment in a mangrove habitat. When comparing compositional data based on DGGE fingerprinting and barcoded pyrosequencing at different cut-off levels, all revealed highly significant differences in composition among microhabitats. Procrustes superimposition revealed that ordination results using cut-off levels from 85-100% and DGGE fingerprint data were highly congruent with the standard 97% cut-off level. The various approaches revealed a primary gradient in composition from nursery to mangrove samples. The affinity between the nursery and transplants was greatest when using Betaproteobacteria followed by Alphaproteobacteria data. There was a distinct secondary gradient in composition from transplants to bulk sediment with native plants intermediate, which was most prevalent using all bacteria at intermediate cut-off levels (92-97%). Our results show that PCR-DGGE provides a robust and cost effective exploratory approach and is effective in distinguishing among a priori defined groups.
Journal Article
Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia
by
Gomes, Newton C. M
,
Cleary, Daniel F. R
,
Polónia, Ana R. M
in
Actinobacteria - classification
,
Actinobacteria - genetics
,
Animals
2015
In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change.
Journal Article
Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment
by
Gomes, Newton C. M
,
Cunha, Ângela
,
Tomé, João P. C
in
Aliivibrio fischeri - drug effects
,
Aliivibrio fischeri - radiation effects
,
Anti-Bacterial Agents - pharmacology
2010
Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py(+)-Me-PF) was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py(+)-Me-PF (5.0 microM) was added to bacterial suspensions and the samples were irradiated with white light (40 W m(-2)) for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes), in presence of 5.0 microM of Tri-Py(+)-Me-PF (99.99% of inactivation) and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py(+)-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process.
Journal Article
Marine sponge and octocoral-associated bacteria show versatile secondary metabolite biosynthesis potential and antimicrobial activities against human pathogens
2022
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.
Journal Article