Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
46 result(s) for "Gong, Mengchun"
Sort by:
Cloud-Based System for Effective Surveillance and Control of COVID-19: Useful Experiences From Hubei, China
Coronavirus disease (COVID-19) has been an unprecedented challenge to the global health care system. Tools that can improve the focus of surveillance efforts and clinical decision support are of paramount importance. The aim of this study was to illustrate how new medical informatics technologies may enable effective control of the pandemic through the development and successful 72-hour deployment of the Honghu Hybrid System (HHS) for COVID-19 in the city of Honghu in Hubei, China. The HHS was designed for the collection, integration, standardization, and analysis of COVID-19-related data from multiple sources, which includes a case reporting system, diagnostic labs, electronic medical records, and social media on mobile devices. HHS supports four main features: syndromic surveillance on mobile devices, policy-making decision support, clinical decision support and prioritization of resources, and follow-up of discharged patients. The syndromic surveillance component in HHS covered over 95% of the population of over 900,000 people and provided near real time evidence for the control of epidemic emergencies. The clinical decision support component in HHS was also provided to improve patient care and prioritize the limited medical resources. However, the statistical methods still require further evaluations to confirm clinical effectiveness and appropriateness of disposition assigned in this study, which warrants further investigation. The facilitating factors and challenges are discussed to provide useful insights to other cities to build suitable solutions based on cloud technologies. The HHS for COVID-19 was shown to be feasible and effective in this real-world field study, and has the potential to be migrated.
Effective Privacy Protection Strategies for Pregnancy and Gestation Information From Electronic Medical Records: Retrospective Study in a National Health Care Data Network in China
Pregnancy and gestation information is routinely recorded in electronic medical record (EMR) systems across China in various data sets. The combination of data on the number of pregnancies and gestations can imply occurrences of abortions and other pregnancy-related issues, which is important for clinical decision-making and personal privacy protection. However, the distribution of this information inside EMR is variable due to inconsistent IT structures across different EMR systems. A large-scale quantitative evaluation of the potential exposure of this sensitive information has not been previously performed, ensuring the protection of personal information is a priority, as emphasized in Chinese laws and regulations. This study aims to perform the first nationwide quantitative analysis of the identification sites and exposure frequency of sensitive pregnancy and gestation information. The goal is to propose strategies for effective information extraction and privacy protection related to women's health. This study was conducted in a national health care data network. Rule-based protocols for extracting pregnancy and gestation information were developed by a committee of experts. A total of 6 different sub-data sets of EMRs were used as schemas for data analysis and strategy proposal. The identification sites and frequencies of identification in different sub-data sets were calculated. Manual quality inspections of the extraction process were performed by 2 independent groups of reviewers on 1000 randomly selected records. Based on these statistics, strategies for effective information extraction and privacy protection were proposed. The data network covered hospitalized patients from 19 hospitals in 10 provinces of China, encompassing 15,245,055 patients over an 11-year period (January 1, 2010-December 12, 2020). Among women aged 14-50 years, 70% were randomly selected from each hospital, resulting in a total of 1,110,053 patients. Of these, 688,268 female patients with sensitive reproductive information were identified. The frequencies of identification were variable, with the marriage history in admission medical records being the most frequent at 63.24%. Notably, more than 50% of female patients were identified with pregnancy and gestation history in nursing records, which is not generally considered a sub-data set rich in reproductive information. During the manual curation and review process, 1000 cases were randomly selected, and the precision and recall rates of the information extraction method both exceeded 99.5%. The privacy-protection strategies were designed with clear technical directions. Significant amounts of critical information related to women's health are recorded in Chinese routine EMR systems and are distributed in various parts of the records with different frequencies. This requires a comprehensive protocol for extracting and protecting the information, which has been demonstrated to be technically feasible. Implementing a data-based strategy will enhance the protection of women's privacy and improve the accessibility of health care services.
Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review
Background A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims to identify, describe, and appraise AI-Ms of CVD prediction in the general and special populations and develop a new independent validation score (IVS) for AI-Ms replicability evaluation. Methods PubMed, Web of Science, Embase, and IEEE library were searched up to July 2021. Data extraction and analysis were performed for the populations, distribution, predictors, algorithms, etc. The risk of bias was evaluated with the prediction risk of bias assessment tool (PROBAST). Subsequently, we designed IVS for model replicability evaluation with five steps in five items, including transparency of algorithms, performance of models, feasibility of reproduction, risk of reproduction, and clinical implication, respectively. The review is registered in PROSPERO (No. CRD42021271789). Results In 20,887 screened references, 79 articles (82.5% in 2017–2021) were included, which contained 114 datasets (67 in Europe and North America, but 0 in Africa). We identified 486 AI-Ms, of which the majority were in development ( n  = 380), but none of them had undergone independent external validation. A total of 66 idiographic algorithms were found; however, 36.4% were used only once and only 39.4% over three times. A large number of different predictors (range 5–52,000, median 21) and large-span sample size (range 80–3,660,000, median 4466) were observed. All models were at high risk of bias according to PROBAST, primarily due to the incorrect use of statistical methods. IVS analysis confirmed only 10 models as “recommended”; however, 281 and 187 were “not recommended” and “warning,” respectively. Conclusion AI has led the digital revolution in the field of CVD prediction, but is still in the early stage of development as the defects of research design, report, and evaluation systems. The IVS we developed may contribute to independent external validation and the development of this field.
State of the Art of Machine Learning–Enabled Clinical Decision Support in Intensive Care Units: Literature Review
Modern clinical care in intensive care units is full of rich data, and machine learning has great potential to support clinical decision-making. The development of intelligent machine learning-based clinical decision support systems is facing great opportunities and challenges. Clinical decision support systems may directly help clinicians accurately diagnose, predict outcomes, identify risk events, or decide treatments at the point of care. We aimed to review the research and application of machine learning-enabled clinical decision support studies in intensive care units to help clinicians, researchers, developers, and policy makers better understand the advantages and limitations of machine learning-supported diagnosis, outcome prediction, risk event identification, and intensive care unit point-of-care recommendations. We searched papers published in the PubMed database between January 1980 and October 2020. We defined selection criteria to identify papers that focused on machine learning-enabled clinical decision support studies in intensive care units and reviewed the following aspects: research topics, study cohorts, machine learning models, analysis variables, and evaluation metrics. A total of 643 papers were collected, and using our selection criteria, 97 studies were found. Studies were categorized into 4 topics-monitoring, detection, and diagnosis (13/97, 13.4%), early identification of clinical events (32/97, 33.0%), outcome prediction and prognosis assessment (46/97, 47.6%), and treatment decision (6/97, 6.2%). Of the 97 papers, 82 (84.5%) studies used data from adult patients, 9 (9.3%) studies used data from pediatric patients, and 6 (6.2%) studies used data from neonates. We found that 65 (67.0%) studies used data from a single center, and 32 (33.0%) studies used a multicenter data set; 88 (90.7%) studies used supervised learning, 3 (3.1%) studies used unsupervised learning, and 6 (6.2%) studies used reinforcement learning. Clinical variable categories, starting with the most frequently used, were demographic (n=74), laboratory values (n=59), vital signs (n=55), scores (n=48), ventilation parameters (n=43), comorbidities (n=27), medications (n=18), outcome (n=14), fluid balance (n=13), nonmedicine therapy (n=10), symptoms (n=7), and medical history (n=4). The most frequently adopted evaluation metrics for clinical data modeling studies included area under the receiver operating characteristic curve (n=61), sensitivity (n=51), specificity (n=41), accuracy (n=29), and positive predictive value (n=23). Early identification of clinical and outcome prediction and prognosis assessment contributed to approximately 80% of studies included in this review. Using new algorithms to solve intensive care unit clinical problems by developing reinforcement learning, active learning, and time-series analysis methods for clinical decision support will be greater development prospects in the future.
Predicting in-hospital outcomes of patients with acute kidney injury
Acute kidney injury (AKI) is prevalent and a leading cause of in-hospital death worldwide. Early prediction of AKI-related clinical events and timely intervention for high-risk patients could improve outcomes. We develop a deep learning model based on a nationwide multicenter cooperative network across China that includes 7,084,339 hospitalized patients, to dynamically predict the risk of in-hospital death (primary outcome) and dialysis (secondary outcome) for patients who developed AKI during hospitalization. A total of 137,084 eligible patients with AKI constitute the analysis set. In the derivation cohort, the area under the receiver operator curve (AUROC) for 24-h, 48-h, 72-h, and 7-day death are 95·05%, 94·23%, 93·53%, and 93·09%, respectively. For dialysis outcome, the AUROC of each time span are 88·32%, 83·31%, 83·20%, and 77·99%, respectively. The predictive performance is consistent in both internal and external validation cohorts. The model can predict important outcomes of patients with AKI, which could be helpful for the early management of AKI. Early prediction of AKI-related clinical events and timely intervention for high-risk patients could improve outcomes. Here, the authors show a deep learning model that can identify patients with acute kidney injury (AKI) who are at high risk of death or dialysis at certain time points.
Privacy protection of sexually transmitted infections information from Chinese electronic medical records
The comprehensive adoption of Electronic Medical Records (EMRs) offers numerous benefits but also introduces risks of privacy leakage, particularly for patients with Sexually Transmitted Infections (STI) who need protection from social secondary harm. Despite advancements in privacy protection research, the effectiveness of these strategies in real-world data remains debatable. The objective is to develop effective information extraction and privacy protection strategies to safeguard STI patients in the Chinese healthcare environment and prevent unnecessary privacy leakage during the data-sharing process of EMRs. The research was conducted at a national healthcare data center, where a committee of experts designed rule-based protocols utilizing natural language processing techniques to extract STI information. Extraction Protocol of Sexually Transmitted Infections Information (EPSTII), designed specifically for the Chinese EMRs system, enables accurate and complete identification and extraction of STI-related information, ensuring high protection performance. The protocol was refined multiple times based on the calculated precision and recall. Final protocol was applied to 5,000 randomly selected EMRs to calculate the success rate of privacy protection. A total of 3,233,174 patients were selected based on the inclusion criteria and a 50% entry ratio. Of these, 148,856 patients with sensitive STI information were identified from disease history. The identification frequency varied, with the diagnosis sub-dataset being the highest at 4.8%. Both the precision and recall rates have reached over 95%, demonstrating the effectiveness of our method. The success rate of privacy protection was 98.25%, ensuring the utmost privacy protection for patients with STI. Finding an effective method to protect privacy information in EMRs is meaningful. We demonstrated the feasibility of applying the EPSTII method to EMRs. Our protocol offers more comprehensive results compared to traditional methods of including STI information.
Pitfalls in Developing Machine Learning Models for Predicting Cardiovascular Diseases: Challenge and Solutions
In recent years, there has been explosive development in artificial intelligence (AI), which has been widely applied in the health care field. As a typical AI technology, machine learning models have emerged with great potential in predicting cardiovascular diseases by leveraging large amounts of medical data for training and optimization, which are expected to play a crucial role in reducing the incidence and mortality rates of cardiovascular diseases. Although the field has become a research hot spot, there are still many pitfalls that researchers need to pay close attention to. These pitfalls may affect the predictive performance, credibility, reliability, and reproducibility of the studied models, ultimately reducing the value of the research and affecting the prospects for clinical application. Therefore, identifying and avoiding these pitfalls is a crucial task before implementing the research. However, there is currently a lack of a comprehensive summary on this topic. This viewpoint aims to analyze the existing problems in terms of data quality, data set characteristics, model design, and statistical methods, as well as clinical implications, and provide possible solutions to these problems, such as gathering objective data, improving training, repeating measurements, increasing sample size, preventing overfitting using statistical methods, using specific AI algorithms to address targeted issues, standardizing outcomes and evaluation criteria, and enhancing fairness and replicability, with the goal of offering reference and assistance to researchers, algorithm developers, policy makers, and clinical practitioners.
Statin initiation and risk of incident kidney disease in patients with diabetes
The role of statin therapy in the development of kidney disease in patients with type 2 diabetes mellitus (DM) remains uncertain. We aimed to determine the relationships between statin initiation and kidney outcomes in patients with type 2 DM. Through a new-user design, we conducted a multicentre retrospective cohort study using the China Renal Data System database (which includes inpatient and outpatient data from 19 urban academic centres across China). We included patients with type 2 DM who were aged 40 years or older and admitted to hospital between Jan. 1, 2000, and May 26, 2021, and excluded those with pre-existing chronic kidney disease and those who were already on statins or without follow-up at an affiliated outpatient clinic within 90 days after discharge. The primary exposure was initiation of a statin. The primary outcome was the development of diabetic kidney disease (DKD), defined as a composite of the occurrence of kidney dysfunction (estimated glomerular filtration rate [eGFR] < 60 mL/min/1.73 m2 and > 25% decline from baseline) and proteinuria (a urinary albumin-to-creatinine ratio ≥ 30 mg/g and > 50% increase from baseline), sustained for at least 90 days; secondary outcomes included development of kidney function decline (a sustained > 40% decline in eGFR). We used Cox proportional hazards regression to evaluate the relationships between statin initiation and kidney outcomes, as well as to conduct subgroup analyses according to patient characteristics, presence or absence of dyslipidemia, and pattern of dyslipidemia. For statin initiators, we explored the association between different levels of lipid control and outcomes. We conducted analyses using propensity overlap weighting to balance the participant characteristics. Among 7272 statin initiators and 12 586 noninitiators in the weighted cohort, statin initiation was associated with lower risks of incident DKD (hazard ratio [HR] 0.72, 95% confidence interval [CI] 0.62–0.83) and kidney function decline (HR 0.60, 95% CI 0.44–0.81). We obtained similar results to the primary analyses for participants with differing patterns of dyslipidemia, those prescribed different statins, and after stratification according to participant characteristics. Among statin initiators, those with intensive control of high-density lipoprotein cholesterol (LDL-C) (< 1.8 mmol/L) had a lower risk of incident DKD (HR 0.51, 95% CI 0.32–0.81) than those with inadequate lipid control (LDL-C ≥ 3.4 mmol/L). For patients with type 2 DM admitted to and followed up in academic centres, statin initiation was associated with a lower risk of kidney disease development, particularly in those with intensive control of LDL-C. These findings suggest that statin initiation may be an effective and reasonable approach for preventing kidney disease in patients with type 2 DM.
Advancing digital health in China: Aligning challenges, opportunities, and solutions with the Global Initiative on Digital Health (GIDH)
According to the “2024 China Digital Healthcare Industry Market Outlook Forecast Report” by the China Academy of Commerce Industry Research, China's digital healthcare market reached 195.4 billion CNY in 2022, with an average annual growth rate of 30% over the last five years. While health management apps are ganing popularity, overall usage remains relatively low. d. Accessibility for various populations: according to the China Internet Network Information Center, internet usage among the elderly, especially in rural areas, is relatively low, limiting their access to digital health services. e. Data security and privacy concerns: While China has made notable strides in digital construction, there remain considerable unmet needs of over one-third of the population residing in rural areas, who may face limitations due to educational levels, economic conditions, or lack of internet access [4]. [...]prioritizing infrastructure enhancement is imperative for the upcoming decade. Electronic health records, telemedicine, AI-driven diagnostics, and mobile health platforms, when incorporated across all aspects of healthcare delivery, have the potential to enable seamless patient data flow, support real-time decision-making, and facilitate personalized care plans. [...]in turn, can improve health outcomes and enhance patient experiences.
In-Depth Examination of the Functionality and Performance of the Internet Hospital Information Platform: Development and Usability Study
Internet hospitals (IHs) have rapidly developed as a promising strategy to address supply-demand imbalances in China's medical industry, with their capabilities directly dependent on information platform functionality. Furthermore, a novel theory of \"Trinity\" smart hospital has provided advanced guidelines on IH constructions. This study aimed to explore the construction experience, construction models, and development prospects based on operational data from IHs. Based on existing information systems and internet service functionalities, our hospital has built a \"Smart Hospital Internet Information Platform (SHIIP)\" for IH operations, actively to expand online services, digitalize traditional health care, and explore health care services modes throughout the entire process and lifecycle. This article encompasses the platform architecture design, technological applications, patient service content and processes, health care professional support features, administrative management tools, and associated operational data. Our platform has presented a set of data, including 82,279,669 visits, 420,120 online medical consultations, 124,422 electronic prescriptions, 92,285 medication deliveries, 6,965,566 prediagnosis triages, 4,995,824 offline outpatient appointments, 2025 medical education articles with a total of 15,148,310 views, and so on. These data demonstrate the significant role of IH as an indispensable component of our physical hospital services, with deep integration between online and offline health care systems. The upward trends in various data metrics indicate that our IH has gained significant recognition and usage among both the public and healthcare workers, and may have promising development prospects. Additionally, the platform construction approach, which prioritizes comprehensive service digitization and the 'Trinity' of the public, healthcare workers, and managers, serves as an effective means of promoting the development of Internet Hospitals. Such insights may prove invaluable in guiding the development of IH and facilitating the continued evolution of the Internet healthcare sector.