Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
418
result(s) for
"Gong Qiyong"
Sort by:
Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives
by
Gu, Zhongwei
,
Pan, Dayi
,
Gong, Qiyong
in
Nanomedicine
,
Organelle-affinitive transfer
,
Penetration models
2024
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
[Display omitted]
•Models for assessing drug penetration into tumors are compared.•Strategies for structural transformation of nanomedicine in the tumor environment are comprehensively elaborated.•Strategies to overcome tumor barriers for deep penetration are provided.•Active tumor penetration is introduced.•The potential and hurdles of nanomedicine in tumor therapies are concluded.
Journal Article
Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes
by
Gong Qiyong
,
Lin, Ching-Po
,
Xu, Xiufeng
in
Brain mapping
,
Calcium signalling
,
Clinical outcomes
2022
Patients with major depressive disorder (MDD) exhibit concurrent deficits in both sensory and higher-order cognitive processing. Connectome studies have suggested a principal primary-to-transmodal gradient in functional brain networks, supporting the spectrum from sensation to cognition. However, whether this gradient structure is disrupted in patients with MDD and how this disruption associates with gene expression profiles and treatment outcome remain unknown. Using a large cohort of resting-state fMRI data from 2227 participants (1148 MDD patients and 1079 healthy controls) recruited at nine sites, we investigated MDD-related alterations in the principal connectome gradient. We further used Neurosynth, postmortem gene expression, and an 8-week antidepressant treatment (20 MDD patients) data to assess the meta-analytic cognitive functions, transcriptional profiles, and treatment outcomes related to MDD gradient alterations, respectively. Relative to the controls, MDD patients exhibited global topographic alterations in the principal primary-to-transmodal gradient, including reduced explanation ratio, gradient range, and gradient variation (Cohen’s d = 0.16–0.21), and focal alterations mainly in the primary and transmodal systems (d = 0.18–0.25). These gradient alterations were significantly correlated with meta-analytic terms involving sensory processing and higher-order cognition. The transcriptional profiles explained 53.9% variance of the altered gradient pattern, with the most correlated genes enriched in transsynaptic signaling and calcium ion binding. The baseline gradient maps of patients significantly predicted symptomatic improvement after treatment. These results highlight the connectome gradient dysfunction in MDD and its linkage with gene expression profiles and clinical management, providing insight into the neurobiological underpinnings and potential biomarkers for treatment evaluation in this disorder.
Journal Article
Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder
2022
Although functional and structural abnormalities in brain regions involved in the neurobiology of fear and anxiety have been observed in patients with social anxiety disorder (SAD), the findings have been heterogeneous due to small sample sizes, demographic confounders, and methodological differences. Besides, multimodal neuroimaging studies on structural-functional deficits and couplings are rather scarce. Herein, we aimed to explore functional network anomalies in brain regions with structural deficits and the effects of structure-function couplings on the SAD diagnosis. High-resolution structural magnetic resonance imaging (MRI) and resting-state functional MRI images were obtained from 49 non-comorbid patients with SAD and 53 demography-matched healthy controls. Whole-brain voxel-based morphometry analysis was conducted to investigate structural alterations, which were subsequently used as seeds for the resting-state functional connectivity analysis. In addition, correlation and mediation analyses were performed to probe the potential roles of structural-functional deficits in SAD diagnosis. SAD patients had significant gray matter volume reductions in the bilateral putamen, right thalamus, and left parahippocampus. Besides, patients with SAD demonstrated widespread resting-state dysconnectivity in cortico-striato-thalamo-cerebellar circuitry. Moreover, dysconnectivity of the putamen with the cerebellum and the right thalamus with the middle temporal gyrus/supplementary motor area partially mediated the effects of putamen/thalamus atrophy on the SAD diagnosis. Our findings provide preliminary evidence for the involvement of structural and functional deficits in cortico-striato-thalamo-cerebellar circuitry in SAD, and may contribute to clarifying the underlying mechanisms of structure-function couplings for SAD. Therefore, they could offer insights into the neurobiological substrates of SAD.
Journal Article
Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder
2020
Alterations in cortical thickness have been identified in major depressive disorder (MDD), but findings have been variable and inconsistent. To date, no reliable tools have been available for the meta-analysis of surface-based morphometric (SBM) studies to effectively characterize what has been learned in previous studies, and drug treatments may have differentially impacted findings. We conducted a comprehensive meta-analysis of magnetic resonance imaging (MRI) studies that explored cortical thickness in medication-free patients with MDD, using a newly developed meta-analytic mask compatible with seed-based d mapping (SDM) meta-analytic software. We performed the meta-regression to explore the effects of demographics and clinical characteristics on variation in cortical thickness in MDD. Fifteen studies describing 529 patients and 586 healthy controls (HCs) were included. Medication-free patients with MDD, relative to HCs, showed a complex pattern of increased cortical thickness in some areas (posterior cingulate cortex, ventromedial prefrontal cortex, and anterior cingulate cortex) and decreased cortical thickness in others (gyrus rectus, orbital segment of the superior frontal gyrus, and middle temporal gyrus). Most findings in the whole sample analysis were confirmed in a meta-analysis of studies recruiting medication-naive patients. Using the new mask specifically developed for SBM studies, this SDM meta-analysis provides evidence for regional cortical thickness alterations in MDD, mainly involving increased cortical thickness in the default mode network and decreased cortical thickness in the orbitofrontal and temporal cortex.
Journal Article
SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis
2021
There are unmet clinical needs for novel therapeutic targets and drugs for bladder cancer. Majority of previous work relied on limited bladder cancer cell lines, which could not well represent the tumor heterogeneity and pathology of this disease. Recently, it has been shown that cancer organoids can recapitulate pathological and molecular properties of bladder cancer. Here, we report, by our knowledge, the first bladder cancer organoid-based small molecule screening for epigenetic drugs. We found that SRT1720, a Sirtuin 1 (SIRT1) activator, significantly inhibits the growth of both mouse and human bladder cancer organoids. And it also restrains the development of mouse in situ bladder cancer and human PDX bladder cancer. Mutation of
Sirt1
promotes the growth of cancer organoids and decreases their sensitivity to SRT1720, which validate
Sirt1
as the target of SRT1720 in bladder cancer. Mechanistically, SRT1720 treatment represses the hypoxia pathway through deacetylating HIF1α by activating Sirt1. Genetic or pharmaceutic inhibitions of HIF mimic the anti-tumor effect of SRT1720. Furthermore, the SIRT1-repressed gene signature is associated with the hypoxia target gene signature and poor prognosis in human bladder cancers. Thus, our study demonstrates the power of cancer organoid-based drug discovery and, in principle, identifies SRT1720 as a new treatment for bladder cancer.
Journal Article
COVID‐19 vicarious traumatization links functional connectome to general distress
by
Kemp, Graham J.
,
Suo, Xueling
,
Pan, Nanfang
in
Anxiety
,
Brain - diagnostic imaging
,
Compassion Fatigue - epidemiology
2022
As characterized by repeated exposure of others’ trauma, vicarious traumatization is a common negative psychological reaction during the COVID-19 pandemic and plays a crucial role in the development of general mental distress. This study aims to identify functional connectome that encodes individual variations of pandemic-related vicarious traumatization and reveal the underlying brain-vicarious traumatization mechanism in predicting general distress. The eligible subjects were 105 general university students (60 females, aged from 19 to 27 years) undergoing brain MRI scanning and baseline behavioral tests (October 2019 to January 2020), whom were re-contacted for COVID-related vicarious traumatization measurement (February to April 2020) and follow-up general distress evaluation (March to April 2021). We applied a connectome-based predictive modeling (CPM) approach to identify the functional connectome supporting vicarious traumatization based on a 268-region-parcellation assigned to network memberships. The CPM analyses showed that only the negative network model stably predicted individuals’ vicarious traumatization scores (q2 = -0.18, MSE = 617, r [predicted, actual] = 0.18, p = 0.024), with the contributing functional connectivity primarily distributed in the fronto-parietal, default mode, medial frontal, salience, and motor network. Furthermore, mediation analysis revealed that vicarious traumatization mediated the influence of brain functional connectome on general distress. Importantly, our results were independent of baseline family socioeconomic status, other stressful life events and general mental health as well as age, sex and head motion. Our study is the first to provide evidence for the functional neural markers of vicarious traumatization and reveal an underlying neuropsychological pathway to predict distress symptoms in which brain functional connectome affects general distress via vicarious traumatization.
Journal Article
The neuro-pathophysiology of temporomandibular disorders-related pain: a systematic review of structural and functional MRI studies
by
Li, Qian
,
Gong Qiyong
,
Long, Jingyi
in
Chronic pain
,
Functional anatomy
,
Functional magnetic resonance imaging
2020
Chronic pain surrounding the temporomandibular joints and masticatory muscles is often the primary chief complaint of patients with temporomandibular disorders (TMD) seeking treatment. Yet, the neuro-pathophysiological basis underlying it remains to be clarified. Neuroimaging techniques have provided a deeper understanding of what happens to brain structure and function in TMD patients with chronic pain. Therefore, we performed a systematic review of magnetic resonance imaging (MRI) studies investigating structural and functional brain alterations in TMD patients to further unravel the neurobiological underpinnings of TMD-related pain. Online databases (PubMed, EMBASE, and Web of Science) were searched up to August 3, 2019, as complemented by a hand search in reference lists. A total of 622 papers were initially identified after duplicates removed and 25 studies met inclusion criteria for this review. Notably, the variations of MRI techniques used and study design among included studies preclude a meta-analysis and we discussed the findings qualitatively according to the specific neural system or network the brain regions were involved in. Brain changes were found in pathways responsible for abnormal pain perception, including the classic trigemino-thalamo-cortical system and the lateral and medial pain systems. Dysfunction and maladaptive changes were also identified in the default mode network, the top-down antinociceptive periaqueductal gray-raphe magnus pathway, as well as the motor system. TMD patients displayed altered brain activations in response to both innocuous and painful stimuli compared with healthy controls. Additionally, evidence indicates that splint therapy can alleviate TMD-related symptoms by inducing functional brain changes. In summary, MRI research provides important novel insights into the altered neural manifestations underlying chronic pain in TMD.
Journal Article
Sex-linked neurofunctional basis of psychological resilience in late adolescence: a resting-state functional magnetic resonance imaging study
2020
Psychological resilience refers to the ability to adapt effectively in the face of adversity, which is closely related to an individual’s psychological and physical health and well-being. Although previous behavioural studies have shown sex differences in psychological resilience, little is known about the neural basis of sex differences in psychological resilience. Here, we measured amplitude of low-frequency fluctuations (ALFF) via resting-state functional magnetic resonance imaging to investigate the sex-linked neurofunctional basis of psychological resilience in 231 healthy adolescents. At the behavioural level, we replicated previous findings indicating that males are more resilient than females. At the neural level, we found sex differences in the relationship between psychological resilience and ALFF in the right orbitofrontal cortex (OFC). Specifically, males showed a positive correlation between psychological resilience and ALFF in the right OFC, while females showed a negative correlation in this region. The sex-specific association between psychological resilience and spontaneous brain activity might be dependent on differences in hormonal systems and brain development between male and female adolescents. Taken together, the results of our study might provide the first evidence of sex-specific neurofunctional substrates of psychological resilience in adolescents, emphasizing the vital role of sex effects in future psychological resilience-related studies.
Journal Article
Efficacy and tolerability of repetitive transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder in adults: a systematic review and network meta-analysis
2021
Repetitive transcranial magnetic stimulation (rTMS) has been widely used as an alternative treatment for obsessive-compulsive disorder (OCD). However, the most effective rTMS parameters, such as the targets and stimulation frequencies, remain controversial. Therefore, we aimed to compare and rank the efficacy and tolerability of different rTMS strategies for OCD treatment. We searched five electronic databases from the date of their inception to March 25, 2020. Pairwise meta-analyses and network meta-analyses were performed to synthesize data. We assessed the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. Twenty-two eligible randomized controlled trials (RCTs) were included. For efficacy, low-frequency (LF) rTMS over the dorsolateral prefrontal cortex (DLPFC; mean difference (MD) 6.34, 95% credible interval (CrI) 2.12–10.42) and supplementary motor area (MD 4.18, 95% CrI 0.83–7.62), and high-frequency rTMS over the DLPFC (MD 3.75, 95% CrI 1.04–6.81) were more effective than sham rTMS. Regarding tolerability, all rTMS treatment strategies were similar to the sham rTMS. The estimated ranking probabilities of treatments showed that LF-rTMS over the DLPFC might be the most effective intervention among all rTMS strategies. However, the quality of evidence regarding efficacy was evaluated as very low. Current evidence suggested a marginal advantage for LF-rTMS over the DLPFC on OCD treatment. High-quality RCTs with low selection and performance bias are needed to further verify the efficacy of specific rTMS strategies for the OCD treatment.
Journal Article
Voxel-wise meta-analysis of task-related brain activation abnormalities in major depressive disorder with suicide behavior
2020
Previous task-fMRI studies have reported the abnormal brain activations in major depressive disorders (MDD) with suicidal behavior. However, there is no consensus of opinion on task-fMRI imaging findings of the suicidal brain. We performed a meta-analysis to integrate the results of reported studies to find the consistent task-related alteration pattern of brain activations in MDD patients with suicidal behavior, aiming to investigate brain functional alterations in association with a vulnerability to suicidal behavior. Using the SDM (Seed-based d Mapping) method, we conducted a meta-analysis of the task-fMRI studies to compare the brain activations between major depressive disorder (MDD) patients with a history of suicidal behavior (suicide attempter, ATT) and the MDD patients without suicidal behavior (non-attempters, NAT) during tasks. Our systematic search identified 7 task-fMRI studies comprising 366 individuals, i.e., 150 ATT and 216 NAT. We found that brain activation in ATT increased in the left insula, while decreased in the bilateral fusiform gyrus compared to NAT during the fMRI tasks. We found the brain activation changes in the insula and fusiform gyrus in MDD patients with a history of suicide attempt during fMRI tasks. The brain activation changes in these regions were associated with the dysfunction of emotion regulation, processing negative information and self-awareness which may increase the vulnerability of suicidal behavior in MDD patients.
Journal Article