Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
901 result(s) for "González, Begoña"
Sort by:
Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia
Combining microfluidics technology with machine learning represents an innovative approach to conduct massive quantitative cell behavior study and implement smart decision-making systems in support of clinical diagnostics. The spleen plays a key-role in rare hereditary hemolytic anemia (RHHA), being the organ responsible for the premature removal of defective red blood cells (RBCs). The goal is to adapt the physiological spleen filtering strategy for in vitro study and monitoring of blood diseases through RBCs shape analysis. Then, a microfluidic device mimicking the slits of the spleen red pulp area and video data analysis are combined for the characterization of RBCs in RHHA. This microfluidic unit is designed to evaluate RBC deformability by maintaining them fixed in planar orientation, allowing the visual inspection of RBC’s capacity to restore their original shape after crossing microconstrictions. Then, two cooperative learning approaches are used for the analysis: the majority voting scheme, in which the most voted label for all the cell images is the class assigned to the entire video; and the maximum sum of scores to decide the maximally scored class to assign. The proposed platform shows the capability to discriminate healthy controls and patients with an average efficiency of 91%, but also to distinguish between RHHA subtypes, with an efficiency of 82%.
Accessible Eco-Friendly Method for Wastewater Removal of the Azo Dye Reactive Black 5 by Reusable Protonated Chitosan-Deep Eutectic Solvent Beads
A novel approach to enhance the utilization of low-cost and sustainable chitosan for wastewater remediation is presented in this investigation. The study centers around the modification of chitosan beads using a deep eutectic solvent composed of choline chloride and urea at a molar ratio of 1:2, followed by treatment with sulfuric acid using an impregnation accessible methodology. The effectiveness of the modified chitosan beads as an adsorbent was evaluated by studying the removal of the azo dye Reactive Black 5 (RB5) from aqueous solutions. Remarkably, the modified chitosan beads demonstrated a substantial increase in adsorption efficiency, achieving excellent removal of RB5 within the concentration range of 25–250 mg/L, ultimately leading to complete elimination. Several key parameters influencing the adsorption process were investigated, including initial RB5 concentration, adsorbent dosage, contact time, temperature, and pH. Quantitative analysis revealed that the pseudo-second-order kinetic model provided the best fit for the experimental data at lower dye concentrations, while the intraparticle diffusion model showed superior performance at higher RB5 concentration ranges (150–250 mg/L). The experimental data were successfully explained by the Langmuir isotherm model, and the maximum adsorption capacities were found to be 116.78 mg/g at 298 K and 379.90 mg/g at 318 K. Desorption studies demonstrated that approximately 41.7% of the dye could be successfully desorbed in a single cycle. Moreover, the regenerated adsorbent exhibited highly efficient RB5 removal (80.0–87.6%) for at least five consecutive uses. The outstanding adsorption properties of the modified chitosan beads can be attributed to the increased porosity, surface area, and swelling behavior resulting from the acidic treatment in combination with the DES modification. These findings establish the modified chitosan beads as a stable, versatile, and reusable eco-friendly adsorbent with high potential for industrial implementation.
Screen-printed electrodes for environmental monitoring of heavy metal ions: a review
Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. Graphical Abstract This review summarises recent advances in the use of screen-printed electrodes (SPEs) for the electrochemical detection of heavy metal ions in water samples. Research proofs of concept and commercially available portable equipments for ‘in situ analysis’ are discussed.
Thermal Characterization and Heat Capacities of Seven Polyphenols
Polyphenolic compounds are key elements in sectors such as pharmaceutics, cosmetics and food; thus, their physicochemical characterization is a vital task. In this work, the thermal behavior of seven polyphenols (trans-resveratrol, trans-polydatin, kaempferol, quercetin, myricetin, hesperidin, and (−)-epicatechin) was investigated with DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis). Melting temperatures, enthalpies of fusion and decomposition temperatures were determined, and heat capacities were measured in the temperature range from 283.15 K to 363.15 K. Results were compared to the scarce experimental data available in the literature, showing a satisfactory agreement. All compounds were found to be thermally stable until melting, upon which they rapidly decomposed. Myricetin was the only polyphenol that presented polymorphic behavior, exhibiting two phase transitions prior to melting. Heat capacities increased minimally with temperature in the studied range. In addition, the group contribution method developed by Marrero and Gani was used to estimate the thermal properties of the polyphenols, achieving high accuracy for melting temperatures.
Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis
Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source ([Formula: see text] and [Formula: see text]), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to [Formula: see text] accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, [Formula: see text] accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment.
Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing
Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs’ modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.
Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus)
Background The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape ( Brassica napus ) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). Results Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH 4 + , amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression . Conclusions The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.
Hydrolytic-Assisted Fractionation of Textile Waste Containing Cotton and Polyester
Resulting properties of cotton and polyester blends make polycotton the most common fabric in textile industry. Separation technologies are key for the chemical processing of the massive amount of polycotton waste produced worldwide. The very different chemical nature of cellulose and polyethylene terephthalate determines the fractionation strategies to obtain two valuable monomaterial streams. In this work, we propose separation pathways seeking the conversion both polymers. First, polyester was depolymerised into its monomeric units through catalytic alkaline hydrolysis. The combined effect of alkali concentration and the catalyst was analysed to overcome the hydrophobic nature of polyester and optimise its conversion rate minimising the damaged caused to the cellulose chains. Conversion rates up to 80% were reached in a single separation stage with a limited effect of the polymer chain distribution of cellulose which remains a fiber-grade feedstock. Alternatively, cellulose was fully removed by selective dissolution in ionic solvent and subsequent filtration resulting in a spinnable mixture. Finally, enzymatic treatments for the conversion of cellulose into fermentable sugars were studied. Single stage conversions of 65% were achieved after maximizing the enzymatic activity. Structural and spectroscopic analysis showed that crystalline domains of textile-grade cotton limit the enzymatic activity. Optimal fractionation process is, in our view, highly context dependent what conveys to seek a variety of alternatives seeking for chemical processes driven by the ulterior up-cycling of the monomaterial streams
Comparison of Capsule Endoscopy and Magnetic Resonance Enterography for the Assessment of Small Bowel Lesions in Crohn's Disease
Abstract Background and Aims Diagnostic yield of Small Bowel Capsule Endoscopy (SBCE) for the assessment of small bowel (SB) lesions is higher than radiologic imaging techniques. However, magnetic resonance enterography (MRE) data are scarce and inconclusive. Colon Capsule Endoscopy (CCE) is a new capsule modality. The primary aim of our study was to compare MRE and capsule endoscopy (CE) for the assessment of Crohn's disease (CD). The secondary objectives were to compare the diagnostic accuracy of both CE modalities and changes in Montreal classification after each examination. Methods We included 47 patients with established (n = 32) or suspected CD (n = 15). MRE was performed first to rule out strictures. In patients with a suspected stricture by MRE, an Agile Patency Capsule was performed. SB disease activity was measured by MaRIA score (MRE) and Lewis Index (CE). Results SB lesions were found in 36 of47 patients with CE and in 21 of47 patients with MRE (76.6% vs 44.7%, P = 0.001). Jejunal inflammation was detected by CE in 31.9% of patients and by MRE in 6.4% of patients (15/47 vs 3/47; P = 0.03); lesions in ileum were detected in 57.4% of patients by CE, and in 21.3% of patients by MRE (27/ 47 vs 10/ 47; P = 0.04). Finally, in terminal ileum, CE showed lesions in 68.1% (32/47) of patients, whereas MRE detected lesions in 38.3% (18/ 47 patients), (P = 0.001). The original Montreal classification was changed in 53.1% of patients (25/ 47) based on CE findings and in 12.7% of patients (6/47) based on MRE findings (P < 0.05). Conclusions In our cohort CE was significantly superior to MRE for detecting SB lesions, mainly superficial and proximal lesions. CE is useful for a appropriate patients' classification according to Montreal classification.
The Role of Gut Microbiota in Gastrointestinal Immune Homeostasis and Inflammation: Implications for Inflammatory Bowel Disease
Inflammatory bowel disease (IBD), a heterogeneous group of recurring inflammatory conditions of the digestive system that encompass both ulcerative colitis (UC) and Crohn’s disease (CD), pose a significant public health challenge, currently lacking a definitive cure. The specific etiopathogenesis of IBD is not yet fully understood, but a multifactorial interplay of genetic and environmental factors is suspected. A growing body of evidence supports the involvement of intestinal dysbiosis in the development of IBD, including the effects of dysbiosis on the integrity of the intestinal epithelial barrier, modulation of the host immune system, alterations in the enteric nervous system, and the perpetuation of chronic inflammation. A comprehensive understanding of these mechanisms is important to define preventive measures, to develop new effective and lasting treatments, and to improve disease outcome. This review examines the complex tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in IBD. In addition, nonpharmacological and behavioral strategies aimed at restoring a proper microbial–immune relationship will be suggested.