Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
700 result(s) for "Gordon, Joshua A"
Sort by:
Hippocampal–prefrontal input supports spatial encoding in working memory
Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal–prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal–prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. Spatial working memory is known to involve the prefrontal cortex and the hippocampus, but the specificities of the connection have been unclear; now, a direct path between these two areas is defined that is necessary for the encoding of spatial cues in mice, but is not required for the maintenance or retrieval of these cues. The nature of spatial memory Spatial working memory is maintained through a coordination of activity between prefrontal brain areas and the hippocampus, but it has been unclear what the precise anatomical connections between these areas are and on what time scales they operate. Here, Joshua Gordon and colleagues define a direct path between prefrontal cortex and hippocampus that is necessary for proper encoding of spatial cues, but is not required for maintenance and retrieval of these cues. Hippocampal information flows to neural units in the prefrontal cortex during the encoding phases of spatial working memory tasks, with successful encoding requiring synchrony between the two brain structures in the gamma-frequency band of network activity. These findings demonstrate the critical importance of hippocampal–prefrontal direct input in the continuous updating of spatial information.
Thalamic projections sustain prefrontal activity during working memory maintenance
Using pathway-specific optogenetic inhibition, the authors demonstrate that projections from the mediodorsal thalamus to prefrontal cortex support the maintenance of working memory, while prefrontal–thalamic projections support subsequent choice selection. Thalamo–prefrontal projections have a circuit-specific role in sustaining prefrontal delay-period activity, a neuronal signature required for successful task performance. The mediodorsal thalamus (MD) shares reciprocal connectivity with the prefrontal cortex (PFC), and decreased MD–PFC connectivity is observed in schizophrenia patients. Patients also display cognitive deficits including impairments in working memory, but a mechanistic link between thalamo–prefrontal circuit function and working memory is missing. Using pathway-specific inhibition, we found directional interactions between mouse MD and medial PFC (mPFC), with MD-to-mPFC supporting working memory maintenance and mPFC-to-MD supporting subsequent choice. We further identify mPFC neurons that display elevated spiking during the delay, a feature that was absent on error trials and required MD inputs for sustained maintenance. Strikingly, delay-tuned neurons had minimal overlap with spatially tuned neurons, and each mPFC population exhibited mutually exclusive dependence on MD and hippocampal inputs. These findings indicate a role for MD in sustaining prefrontal activity during working memory maintenance. Consistent with this idea, we found that enhancing MD excitability was sufficient to enhance task performance.
Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task
Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty. Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.
Revisiting the seven pillars of RDoC
Background In 2013, a few years after the launch of the National Institute of Mental Health’s Research Domain Criteria (RDoC) initiative, Cuthbert and Insel published a paper titled “Toward the future of psychiatric diagnosis: the seven pillars of RDoC . ” The RDoC project is a translational research effort to encourage new ways of studying psychopathology through a focus on disruptions in normal functions (such as reward learning or attention) that are defined jointly by observable behavior and neurobiological measures. The paper outlined the principles of the RDoC research framework, including emphases on research that acquires data from multiple measurement classes to foster integrative analyses, adopts dimensional approaches, and employs novel methods for ascertaining participants and identifying valid subgroups. Discussion To mark the first decade of the RDoC initiative, we revisit the seven pillars and highlight new research findings and updates to the framework that are related to each. This reappraisal emphasizes the flexible nature of the RDoC framework and its application in diverse areas of research, new findings related to the importance of developmental trajectories within and across neurobehavioral domains, and the value of computational approaches for clarifying complex multivariate relations among behavioral and neurobiological systems. Conclusion The seven pillars of RDoC have provided a foundation that has helped to guide a surge of new studies that have examined neurobehavioral domains related to mental disorders, in the service of informing future psychiatric nosology. Building on this footing, future areas of emphasis for the RDoC project will include studying central-peripheral interactions, developing novel approaches to phenotyping for genomic studies, and identifying new targets for clinical trial research to facilitate progress in precision psychiatry.
Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety
This study examines neuronal activity coupling between the medial prefrontal cortex (mPFC), basolateral amygdala (BLA) and hippocampus during the recall phase of a differential fear conditioning task and during exposure to a novel open field. The authors show that theta frequency power and synchrony between the mPFC and BLA increase with successful discrimination of aversive versus safe cues, and that the mPFC activity leads that in the BLA during safety. Successfully differentiating safety from danger is an essential skill for survival. While decreased activity in the medial prefrontal cortex (mPFC) is associated with fear generalization in animals and humans, the circuit-level mechanisms used by the mPFC to discern safety are not clear. To answer this question, we recorded activity in the mPFC, basolateral amygdala (BLA) and dorsal and ventral hippocampus in mice during exposure to learned (differential fear conditioning) and innate (open field) anxiety. We found increased synchrony between the mPFC and BLA in the theta frequency range (4–12 Hz) only in animals that differentiated between averseness and safety. Moreover, during recognized safety across learned and innate protocols, BLA firing became entrained to theta input from the mPFC. These data suggest that selective tuning of BLA firing to mPFC input provides a safety-signaling mechanism whereby the mPFC taps into the microcircuitry of the amygdala to diminish fear.
Reset of hippocampal–prefrontal circuitry facilitates learning
The ability to rapidly adapt to novel situations is essential for survival, and this flexibility is impaired in many neuropsychiatric disorders 1 . Thus, understanding whether and how novelty prepares, or primes, brain circuitry to facilitate cognitive flexibility has important translational relevance. Exposure to novelty recruits the hippocampus and medial prefrontal cortex (mPFC) 2 and may prime hippocampal–prefrontal circuitry for subsequent learning-associated plasticity. Here we show that novelty resets the neural circuits that link the ventral hippocampus (vHPC) and the mPFC, facilitating the ability to overcome an established strategy. Exposing mice to novelty disrupted a previously encoded strategy by reorganizing vHPC activity to local theta (4–12 Hz) oscillations and weakening existing vHPC–mPFC connectivity. As mice subsequently adapted to a new task, vHPC neurons developed new task-associated activity, vHPC–mPFC connectivity was strengthened, and mPFC neurons updated to encode the new rules. Without novelty, however, mice adhered to their established strategy. Blocking dopamine D1 receptors (D1Rs) or inhibiting novelty-tagged cells that express D1Rs in the vHPC prevented these behavioural and physiological effects of novelty. Furthermore, activation of D1Rs mimicked the effects of novelty. These results suggest that novelty promotes adaptive learning by D1R-mediated resetting of vHPC–mPFC circuitry, thereby enabling subsequent learning-associated circuit plasticity. Exposure to a novel experience can ‘reset’ connections between the hippocampus and prefrontal cortex in mice, allowing them to overcome an existing learned behaviour and to replace it with a new one.
Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model
The hippocampal CA2 region is essential for social memory. To determine whether CA2 activity encodes social interactions, we recorded extracellularly from CA2 pyramidal neurons (PNs) in male mice during social behavior. Although CA2 neuronal firing showed only weak spatial selectivity, it accurately encoded contextual changes and distinguished between a novel and a familiar mouse. In the Df(16)A+/− mouse model of the human 22q11.2 microdeletion, which confers a 30-fold increased risk of schizophrenia, CA2 social coding was impaired, consistent with the social memory deficit observed in these mice; in contrast, spatial coding accuracy was greatly enhanced. CA2 PNs were previously found to be hyperpolarized in Df(16)A+/− mice, likely due to upregulation of TREK-1 K+ current. We found that TREK-1 blockade rescued social memory and CA2 social coding in Df(16)A+/− mice, supporting a crucial role for CA2 in the normal encoding of social stimuli and in social behavioral dysfunction in disease.Donegan et al. show that hippocampal CA2 neurons contribute to social memory by encoding social novelty. Abnormal CA2 coding and social memory in a mouse model of the 22q11.2 microdeletion are rescued by blocking elevated CA2 TREK-1 K+ current.
Repeated Cortico-Striatal Stimulation Generates Persistent OCD-Like Behavior
Although cortico-striato-thalamo-cortical (CSTC) circuit dysregulation is correlated with obsessive compulsive disorder (OCD), causation cannot be tested in humans. We used optogenetics in mice to simulate CSTC hyperactivation observed in OCD patients. Whereas acute orbitofrontal cortex (OFC)-ventromedial striatum (VMS) stimulation did not produce repetitive behaviors, repeated hyperactivation over multiple days generated a progressive increase in grooming, a mouse behavior related to OCD. Increased grooming persisted for 2 weeks after stimulation cessation. The grooming increase was temporally coupled with a progressive increase in light-evoked firing of postsynaptic VMS cells. Both increased grooming and evoked firing were reversed by chronic fluoxetine, a first-line OCD treatment. Brief but repeated episodes of abnormal circuit activity may thus set the stage for the development of persistent psychopathology.
Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia
Schizophrenia connections The 22q11.2 microdeletion is one of the most reliable known genetic risk factors for schizophrenia. Mice with a disruption in the equivalent chromosomal region have problems with working memory, one feature of schizophrenia. Sigurdsson et al . show that these mice also have disruptions in synchronous firing between prefrontal cortex and hippocampal neurons, a phenomenon that has been linked to learning and memory, and which is also disrupted in schizophrenia patients. These findings suggest that disruption of communication between these brain regions may underlie schizophrenia, and efforts to ameliorate this disruption may lead to novel treatments. A deletion on human chromosome 22 (22q11.2) is one of the largest genetic risk factors for schizophrenia. Mice with a corresponding deletion have problems with working memory, one feature of schizophrenia. It is now found that these mice also show disruptions in synchronous firing between neurons of the prefrontal cortex and of the hippocampus, an electrophysiological phenomenon that has been linked to learning and memory and which is also thought to be disrupted in schizophrenia patients. Abnormalities in functional connectivity between brain areas have been postulated as an important pathophysiological mechanism underlying schizophrenia 1 , 2 . In particular, macroscopic measurements of brain activity in patients suggest that functional connectivity between the frontal and temporal lobes may be altered 3 , 4 . However, it remains unclear whether such dysconnectivity relates to the aetiology of the illness, and how it is manifested in the activity of neural circuits. Because schizophrenia has a strong genetic component 5 , animal models of genetic risk factors are likely to aid our understanding of the pathogenesis and pathophysiology of the disease. Here we study Df(16)A +/– mice, which model a microdeletion on human chromosome 22 (22q11.2) that constitutes one of the largest known genetic risk factors for schizophrenia 6 . To examine functional connectivity in these mice, we measured the synchronization of neural activity between the hippocampus and the prefrontal cortex during the performance of a task requiring working memory, which is one of the cognitive functions disrupted in the disease. In wild-type mice, hippocampal–prefrontal synchrony increased during working memory performance, consistent with previous reports in rats 7 . Df(16)A +/– mice, which are impaired in the acquisition of the task, showed drastically reduced synchrony, measured both by phase-locking of prefrontal cells to hippocampal theta oscillations and by coherence of prefrontal and hippocampal local field potentials. Furthermore, the magnitude of hippocampal–prefrontal coherence at the onset of training could be used to predict the time it took the Df(16)A +/– mice to learn the task and increased more slowly during task acquisition. These data suggest how the deficits in functional connectivity observed in patients with schizophrenia may be realized at the single-neuron level. Our findings further suggest that impaired long-range synchrony of neural activity is one consequence of the 22q11.2 deletion and may be a fundamental component of the pathophysiology underlying schizophrenia.