Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
115 result(s) for "Gordon, Larry M."
Sort by:
Emulation of the structure of the Saposin protein fold by a lung surfactant peptide construct of surfactant Protein B
The three-dimensional structure of the synthetic lung Surfactant Protein B Peptide Super Mini-B was determined using an integrative experimental approach, including mass spectrometry and isotope enhanced Fourier-transform infrared (FTIR) spectroscopy. Mass spectral analysis of the peptide, oxidized by solvent assisted region-specific disulfide formation, confirmed that the correct folding and disulfide pairing could be facilitated using two different oxidative structure-promoting solvent systems. Residue specific analysis by isotope enhanced FTIR indicated that the N-terminal and C-terminal domains have well defined α-helical amino acid sequences. Using these experimentally derived measures of distance constraints and disulfide connectivity, the ensemble was further refined with molecular dynamics to provide a medium resolution, residue-specific structure for the peptide construct in a simulated synthetic lung surfactant lipid multilayer environment. The disulfide connectivity combined with the α-helical elements stabilize the peptide conformationally to form a helical hairpin structure that resembles critical elements of the Saposin protein fold of the predicted full-length Surfactant Protein B structure.
Structural and functional stability of the sulfur-free surfactant protein B peptide mimic B-YL in synthetic surfactant lipids
Background Optimal functionality of synthetic lung surfactant for treatment of respiratory distress syndrome in preterm infants largely depends on the quality and quantity of the surfactant protein B (SP-B) peptide mimic and the lipid mixture. B-YL peptide is a 41-residue sulfur-free SP-B mimic with its cysteine and methionine residues replaced by tyrosine and leucine, respectively, to enhance its oxidation resistance. Aim Testing the structural and functional stability of the B-YL peptide in synthetic surfactant lipids after long-term storage. Methods The structural and functional properties of B-YL peptide in surfactant lipids were studied using three production runs of B-YL peptides in synthetic surfactant lipids. Each run was held at 5 °C ambient temperature for three years and analyzed with structural and computational techniques, i.e., MALDI-TOF mass spectrometry, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), secondary homology modeling of a preliminary B-YL structure, and tertiary Molecular Dynamic simulations of B-YL in surfactant lipids, and with functional methods, i.e., captive bubble surfactometry (CBS) and retesting in vivo surface activity in surfactant-deficient young adult rabbits. Results MALDI-TOF mass spectrometry showed no degradation of the B-YL peptide as a function of stored time. ATR-FTIR studies demonstrated that the B-YL peptide still assumed stable alpha-helical conformations in synthetic surfactant lipids. These structural findings correlated with excellent in vitro surface activity during both quasi-static and dynamic cycling on CBS after three years of cold storage and in vivo surface activity of the aged formulations with improvements in oxygenation and dynamic lung compliance approaching those of the positive control surfactant Curosurf®. Conclusions The structure of the B-YL peptide and the in vitro and in vivo functions of the B-YL surfactant were each maintained after three years of refrigeration storage.
Aerosol delivery of dry powder synthetic lung surfactant to surfactant-deficient rabbits and preterm lambs on non-invasive respiratory support
Background : The development of synthetic lung surfactant for preterm infants has focused on peptide analogues of native surfactant proteins B and C (SP-B and SP-C). Non-invasive respiratory support with nasal continuous positive airway pressure (nCPAP) may benefit from synthetic surfactant for aerosol delivery. Methods : A total of three dry powder (DP) surfactants, consisting of phospholipids and the SP-B analogue Super Mini-B (SMB), and one negative control DP surfactant without SMB, were produced with the Acorda Therapeutics ARCUS® Pulmonary Dry Powder Technology. Structure of the DP surfactants was compared with FTIR spectroscopy, in vitro surface activity with captive bubble surfactometry, and in vivo activity in surfactant-deficient adult rabbits and preterm lambs. In the animal experiments, intratracheal (IT) aerosol delivery was compared with surfactant aerosolization during nCPAP support. Surfactant dosage was 100 mg/kg of lipids and aerosolization was performed using a low flow inhaler. Results: FTIR spectra of the three DP surfactants each showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to that previously noted for surface-active SMB in other lipids. The DP surfactants with SMB demonstrated in vitro surface activity <1 mN/m. Oxygenation and lung function increased quickly after IT aerosolization of DP surfactant in both surfactant-deficient rabbits and preterm lambs, similar to improvements seen with clinical surfactant. The response to nCPAP aerosol delivery of DP surfactant was about 50% of IT aerosol delivery, but could be boosted with a second dose in the preterm lambs. Conclusions: Aerosol delivery of DP synthetic surfactant during non-invasive respiratory support with nCPAP significantly improved oxygenation and lung function in surfactant-deficient animals and this response could be enhanced by giving a second dose. Aerosol delivery of DP synthetic lung surfactant has potential for clinical applications.
Critical Structural and Functional Roles for the N-Terminal Insertion Sequence in Surfactant Protein B Analogs
Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a \"saposin-like\" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.
A sulfur-free peptide mimic of surfactant protein B (B-YL) exhibits high in vitro and in vivo surface activities
Background : Animal-derived surfactants containing surfactant proteins B (SP-B) and C (SP-C) are used to treat respiratory distress syndrome (RDS) in preterm infants. SP-B (79 residues) plays a pivotal role in lung function and the design of synthetic lung surfactant. Super Mini-B (SMB), a 41-residue peptide based on the N- and C-domains of SP-B covalently joined with a turn and two disulfides, folds as an α-helix hairpin mimicking the properties of these domains in SP-B. Here, we studied ‘B-YL’, a 41-residue SMB variant that has its four cysteine and two methionine residues replaced by tyrosine and leucine, respectively, to test whether these hydrophobic substitutions produce a surface-active, α-helix hairpin. Methods: Structure and function of B-YL and SMB in surfactant lipids were compared with CD and FTIR spectroscopy, and surface activity with captive bubble surfactometry and in lavaged, surfactant-deficient adult rabbits. Results: CD and FTIR spectroscopy of B-YL in surfactant lipids showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to SMB in lipids. B-YL in surfactant lipids demonstrated excellent in vitro surface activity and good oxygenation and dynamic compliance in lavaged, surfactant-deficient adult rabbits, suggesting that the four tyrosine substitutions are an effective replacement for the disulfide-reinforced helix-turn of SMB. Here, the B-YL fold may be stabilized by a core of clustered tyrosines linking the N- and C-helices through non-covalent interactions involving aromatic rings. Conclusions: ‘Sulfur-free’ B-YL forms an amphipathic helix-hairpin in surfactant liposomes with high surface activity and is functionally similar to SMB and native SP-B. The removal of the cysteines makes B-YL more feasible to scale up production for clinical application. B-YL’s possible resistance against free oxygen radical damage to methionines by substitutions with leucine provides an extra edge over SMB in the treatment of respiratory failure in preterm infants with RDS.
Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury
Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf(®), a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein leakage and surfactant dysfunction after HCl instillation than following lung lavage. At the end of the duration of the experiments, synthetic surfactants provided more clinical stability in ALI/ARDS than Infasurf, and the protein content of bronchoalveolar lavage fluid was lowest for the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA. Conclusion. Advanced synthetic surfactant with robust SP-B and SP-C mimics is better equipped to tackle surfactant inactivation in chemical ALI than synthetic surfactant with only a single surfactant peptide or animal-derived surfactant.
Surfactant protein C peptides with salt-bridges (“ion-locks”) promote high surfactant activities by mimicking the α -helix and membrane topography of the native protein
Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as 'helical adjuvants' to maintain activity by overriding the β-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges (\"ion-locks\") promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu(-)-Lys(+) into the parent SP-C's. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with 'amyloid-like' properties. The enhanced β-sheet properties for SP-Css and SP-Cff are likely responsible for their low surfactant activities in the in vitro and in vivo assays. Although standard (12)C-FTIR study showed that the α-helicity of these SP-C sequences in lipids was uniformly increased with Glu(-)-Lys(+) insertions, elevated surfactant activity was only selectively observed. Additional results from oriented and H/D exchange FTIR experiments indicated that the high surfactant activities depend on the SP-C ion-locks recapitulating both the α-helicity and the membrane topography of native SP-C. SP-Css ion-lock 1, an SP-Css with a salt-bridge for a Glu(-)-Lys(+) ion-pair predicted from MPEx hydropathy calculations, demonstrated enhanced surfactant activity and a transmembrane helix simulating those of native SP-C. Conclusion. Highly active SP-C mimics were developed that replace the palmitoyls of SP-C with intrapeptide salt-bridges and represent a new class of synthetic surfactants with therapeutic interest.
Dynamic Surface Activity of a Fully Synthetic Phospholipase-Resistant Lipid/Peptide Lung Surfactant
This study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung surfactant containing a novel diether phosphonolipid (DEPN-8) plus a 34 amino acid peptide (Mini-B) related to native surfactant protein (SP)-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and plasmon resonance. Calf lung surfactant extract (CLSE) was used as a positive control. DEPN-8+1.5% (by wt.) Mini-B was fully resistant to degradation by phospholipase A(2) (PLA(2)) in vitro, while CLSE was severely degraded by this enzyme. Mini-B interacted with DEPN-8 at the molecular level based on FTIR spectroscopy, and had significant plasmon resonance binding affinity for DEPN-8. DEPN-8+1.5% Mini-B had greatly increased adsorption compared to DEPN-8 alone, but did not fully equal the very high adsorption of CLSE. In pulsating bubble studies at a low phospholipid concentration of 0.5 mg/ml, DEPN-8+1.5% Mini-B and CLSE both reached minimum surface tensions <1 mN/m after 10 min of cycling. DEPN-8 (2.5 mg/ml)+1.5% Mini-B and CLSE (2.5 mg/ml) also reached minimum surface tensions <1 mN/m at 10 min of pulsation in the presence of serum albumin (3 mg/ml) on the pulsating bubble. In captive bubble studies, DEPN-8+1.5% Mini-B and CLSE both generated minimum surface tensions <1 mN/m on 10 successive cycles of compression/expansion at quasi-static and dynamic rates. These results show that DEPN-8 and 1.5% Mini-B form an interactive binary molecular mixture with very high surface activity and the ability to resist degradation by phospholipases in inflammatory lung injury. These characteristics are promising for the development of related fully-synthetic lipid/peptide exogenous surfactants for treating diseases of surfactant deficiency or dysfunction.
Aerosol delivery of dry powder synthetic lung surfactant to surfactant-deficient rabbits and preterm lambs on non-invasive respiratory support
Background : The development of synthetic lung surfactant for preterm infants has focused on peptide analogues of native surfactant proteins B and C (SP-B and SP-C). Non-invasive respiratory support with nasal continuous positive airway pressure (nCPAP) may benefit from synthetic surfactant for aerosol delivery. Methods : A total of three dry powder (DP) surfactants, consisting of phospholipids and the SP-B analogue Super Mini-B (SMB), and one negative control DP surfactant without SMB, were produced with the Acorda Therapeutics ARCUS® Pulmonary Dry Powder Technology. Structure of the DP surfactants was compared with FTIR spectroscopy, in vitro surface activity with captive bubble surfactometry, and in vivo activity in surfactant-deficient adult rabbits and preterm lambs. In the animal experiments, intratracheal (IT) aerosol delivery was compared with surfactant aerosolization during nCPAP support. Surfactant dosage was 100 mg/kg of lipids and aerosolization was performed using a low flow inhaler. Results: FTIR spectra of the three DP surfactants each showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to that previously noted for surface-active SMB in other lipids. The DP surfactants with SMB demonstrated in vitro surface activity <1 mN/m. Oxygenation and lung function increased quickly after IT aerosolization of DP surfactant in both surfactant-deficient rabbits and preterm lambs, similar to improvements seen with clinical surfactant. The response to nCPAP aerosol delivery of DP surfactant was about 50% of IT aerosol delivery, but could be boosted with a second dose in the preterm lambs. Conclusions: Aerosol delivery of active DP synthetic surfactant during non-invasive respiratory support with nCPAP significantly improved oxygenation and lung function in surfactant-deficient animals and this response could be enhanced by giving a second dose. Aerosol delivery of DP synthetic lung surfactant has potential for clinical applications.
Hydrophobic Surfactant Proteins and Their Analogues
Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments.