Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
160 result(s) for "Gottardo, Raphael"
Sort by:
Spatial transcriptomics at subspot resolution with BayesSpace
Recent spatial gene expression technologies enable comprehensive measurement of transcriptomic profiles while retaining spatial context. However, existing analysis methods do not address the limited resolution of the technology or use the spatial information efficiently. Here, we introduce BayesSpace, a fully Bayesian statistical method that uses the information from spatial neighborhoods for resolution enhancement of spatial transcriptomic data and for clustering analysis. We benchmark BayesSpace against current methods for spatial and non-spatial clustering and show that it improves identification of distinct intra-tissue transcriptional profiles from samples of the brain, melanoma, invasive ductal carcinoma and ovarian adenocarcinoma. Using immunohistochemistry and an in silico dataset constructed from scRNA-seq data, we show that BayesSpace resolves tissue structure that is not detectable at the original resolution and identifies transcriptional heterogeneity inaccessible to histological analysis. Our results illustrate BayesSpace’s utility in facilitating the discovery of biological insights from spatial transcriptomic datasets. BayesSpace increases the resolution of spatial transcriptomics by using neighborhood information.
Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression
Methods for quantifying gene expression 1 and chromatin accessibility 2 in single cells are well established, but single-cell analysis of chromatin regions with specific histone modifications has been technically challenging. In this study, we adapted the CUT&Tag method 3 to scalable nanowell and droplet-based single-cell platforms to profile chromatin landscapes in single cells (scCUT&Tag) from complex tissues and during the differentiation of human embryonic stem cells. We focused on profiling polycomb group (PcG) silenced regions marked by histone H3 Lys27 trimethylation (H3K27me3) in single cells as an orthogonal approach to chromatin accessibility for identifying cell states. We show that scCUT&Tag profiling of H3K27me3 distinguishes cell types in human blood and allows the generation of cell-type-specific PcG landscapes from heterogeneous tissues. Furthermore, we used scCUT&Tag to profile H3K27me3 in a patient with a brain tumor before and after treatment, identifying cell types in the tumor microenvironment and heterogeneity in PcG activity in the primary sample and after treatment. An improved method for single-cell analysis of histone modifications is applied to stem cell differentiation and cancer.
Single-cell immunology of SARS-CoV-2 infection
Gaining a better understanding of the immune cell subsets and molecular factors associated with protective or pathological immunity against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 could aid the development of vaccines and therapeutics for coronavirus disease 2019 (COVID-19). Single-cell technologies, such as flow cytometry, mass cytometry, single-cell transcriptomics and single-cell multi-omic profiling, offer considerable promise in dissecting the heterogeneity of immune responses among individual cells and uncovering the molecular mechanisms of COVID-19 pathogenesis. Single-cell immune-profiling studies reported to date have identified innate and adaptive immune cell subsets that correlate with COVID-19 disease severity, as well as immunological factors and pathways of potential relevance to the development of vaccines and treatments for COVID-19. For facilitation of integrative studies and meta-analyses into the immunology of SARS-CoV-2 infection, we provide standardized, download-ready versions of 21 published single-cell sequencing datasets (over 3.2 million cells in total) as well as an interactive visualization portal for data exploration. This Review provides an overview of existing studies using single-cell technologies to provide insights over the immune responses and molecular mechanisms at work in COVID-19.
Orchestrating single-cell analysis with Bioconductor
Recent technological advancements have enabled the profiling of a large number of genome-wide features in individual cells. However, single-cell data present unique challenges that require the development of specialized methods and software infrastructure to successfully derive biological insights. The Bioconductor project has rapidly grown to meet these demands, hosting community-developed open-source software distributed as R packages. Featuring state-of-the-art computational methods, standardized data infrastructure and interactive data visualization tools, we present an overview and online book ( https://osca.bioconductor.org ) of single-cell methods for prospective users. This Perspective highlights open-source software for single-cell analysis released as part of the Bioconductor project, providing an overview for users and developers.
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features. We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is available at https://github.com/RGLab/MAST .
IDEAS: individual level differential expression analysis for single-cell RNA-seq data
We consider an increasingly popular study design where single-cell RNA-seq data are collected from multiple individuals and the question of interest is to find genes that are differentially expressed between two groups of individuals. Towards this end, we propose a statistical method named IDEAS (individual level differential expression analysis for scRNA-seq). For each gene, IDEAS summarizes its expression in each individual by a distribution and then assesses whether these individual-specific distributions are different between two groups of individuals. We apply IDEAS to assess gene expression differences of autism patients versus controls and COVID-19 patients with mild versus severe symptoms.
Optimizing clinical dosing of combination broadly neutralizing antibodies for HIV prevention
Broadly neutralizing antibodies (bNAbs) are promising agents to prevent HIV infection and achieve HIV remission without antiretroviral therapy (ART). As with ART, bNAb combinations are likely needed to cover HIV’s extensive diversity. Not all bNAbs are identical in terms of their breadth, potency, and in vivo longevity (half-life). Given these differences, it is important to optimally select the composition, or dose ratio, of combination bNAb therapies for future clinical studies. We developed a model that synthesizes 1) pharmacokinetics, 2) potency against a wide HIV diversity, 3) interaction models for how drugs work together, and 4) correlates that translate in vitro potency to clinical protection. We found optimization requires drug-specific balances between potency, longevity, and interaction type. As an example, tradeoffs between longevity and potency are shown by comparing a combination therapy to a bi-specific antibody (a single protein merging both bNAbs) that takes the better potency but the worse longevity of the two components. Then, we illustrate a realistic dose ratio optimization of a triple combination of VRC07, 3BNC117, and 10–1074 bNAbs. We apply protection estimates derived from both a non-human primate (NHP) challenge study meta-analysis and the human antibody mediated prevention (AMP) trials. In both cases, we find a 2:1:1 dose emphasizing VRC07 is nearly optimal. Our approach can be immediately applied to optimize the next generation of combination antibody prevention and cure studies.
Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19
A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival. The immune cells of individuals with COVID-19 show metabolic changes.
Combining Mixture Components for Clustering
Model-based clustering consists of fitting a mixture model to data and identifying each cluster with one of its components. Multivariate normal distributions are typically used. The number of clusters is usually determined from the data, often using BIC. In practice, however, individual clusters can be poorly fitted by Gaussian distributions, and in that case model-based clustering tends to represent one non-Gaussian cluster by a mixture of two or more Gaussian distributions. If the number of mixture components is interpreted as the number of clusters, this can lead to overestimation of the number of clusters. This is because BIC selects the number of mixture components needed to provide a good approximation to the density, rather than the number of clusters as such. We propose first selecting the total number of Gaussian mixture components, K, using BIC and then combining them hierarchically according to an entropy criterion. This yields a unique soft clustering for each number of clusters less than or equal to K. These clusterings can be compared on substantive grounds, and we also describe an automatic way of selecting the number of clusters via a piecewise linear regression fit to the rescaled entropy plot. We illustrate the method with simulated data and a flow cytometry dataset. Supplemental materials are available on the journal web site and described at the end of the article.
The Human Exersome Initiative (HEI): Rationale, study design, and protocol
Habitual physical activity and exercise training (PA/EX) confers numerous health-benefits. Phenotypic adaptations and clinical health outcomes attributable to PA/EX are well-established, and molecular markers and mediators of the PA/EX response have been described. To date, the majority of prior work focused on the biochemical response to PA/EX has leveraged convenience samples of trained athletes participating in events, patients undergoing clinically indicated exercise stress testing, or laboratory protocols comprised of a single dose of exercise. Accordingly, the impact of “exercise dose”, defined by the product of intensity, duration, modality, and frequency, on the human biochemical response to PA/EX remains largely unexplored. The Human Exersome Initiative (HEI) was designed to fill this scientific knowledge gap. Specifically, the HEI will couple carefully controlled laboratory-based acute exercise testing with comprehensive systemic biochemical profiling to isolate the impact of PA/EX duration and intensity on human biochemistry. Herein, we describe the initial phase of the HEI which will aim to comprehensively define the impact of “exercise dose” on blood-based biochemistry in healthy young men and women. The overarching goal of the HEI is to elucidate how the human exercise response varies as a function of phenotypic variability. Using comparator data derived from young men and women, future iterations of this protocol will seek to determine how key sources of human variability (i.e., age, ethnicity, and the presence of comorbid disease) impact the biochemical response to PA/EX. We anticipate results from this work will facilitate biomarker discovery, the elucidation of molecular pathways and mechanisms associated with metabolic responses to exercise, and the identification of optimal exercise doses for future clinical interventions (i.e., tailoring preventive and therapeutic strategies).