Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Goutagny, Nadège"
Sort by:
Targeting pattern recognition receptors in cancer immunotherapy
Pattern recognition receptors (PRRs) are known for many years for their role in the recognition of microbial products and the subsequent activation of the immune system. The 2011 Nobel Prize for medicine indeed rewarded J. Hoffmann/B. Beutler and R. Steinman for their revolutionary findings concerning the activation of the immune system, thus stressing the significance of understanding the mechanisms of activation of the innate immunity. Such immunostimulatory activities are of major interest in the context of cancer to induce long-term antitumoral responses. Ligands for the toll-like receptors (TLRs), a well-known family of PRR, have been shown to have antitumoral activities in several cancers. Those ligands are now undergoing extensive clinical investigations both as immunostimulant molecules and as adjuvant along with vaccines. However, when considering the use of these ligands in tumor therapy, one shall consider the potential effect on the tumor cells themselves as well as on the entire organism. Recent data indeed demonstrate that TLR activation in tumor cells could trigger both pro- or antitumoral effect depending on the context. This review discusses this balance between the intrinsic activation of PRR in tumor cells and the extrinsic microenvironment activation in term of overall effect of PRR ligands on tumor development. We review recent advances in the field and underline appealing prospects for clinical development of PRR agonists in the light of our current knowledge on their expression and activation.
Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling
The Gram-negative bacteria Yersinia pestis , causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-κB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-κB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition.
Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9
Hemozoin (HZ) is an insoluble crystal formed in the food vacuole of malaria parasites. HZ has been reported to induce inflammation by directly engaging Toll-like receptor (TLR) 9, an endosomal receptor. \"Synthetic\" HZ (β-hematin), typically generated from partially purified extracts of bovine hemin, is structurally identical to natural HZ. When HPLC-purified hemin was used to synthesize the crystal, β-hematin had no inflammatory activity. In contrast, natural HZ from Plasmodium falciparum cultures was a potent TLR9 inducer. Natural HZ bound recombinant TLR9 ectodomain, but not TLR2. Both TLR9 stimulation and TLR9 binding of HZ were abolished by nuclease treatment. PCR analysis demonstrated that natural HZ is coated with malarial but not human DNA. Purified malarial DNA activated TLR9 but only when DNA was targeted directly to the endosome with a transfection reagent. Stimulatory quantities of natural HZ contain <1 μg of malarial DNA; its potency in activating immune responses was even greater than transfecting malarial DNA. Thus, although the malarial genome is extremely AT-rich, its DNA is highly proinflammatory, with the potential to induce cytokinemia and fever during disease. However, its activity depends on being bound to HZ, which we propose amplifies the biological responses to malaria DNA by targeting it to a TLR9⁺ intracellular compartment.
Quantification and Functional Analysis of Plasmacytoid Dendritic Cells in Patients with Chronic Hepatitis C Virus Infection
Background. Plasmacytoid dendritic cells (PDCs) are the major producers of interferon (IFN)-α within peripheral blood mononuclear cells (PBMCs). Methods. We analyzed whether chronic hepatitis C virus (HCV) infection could be linked to a defective function or number of PDCs. We evaluated the capacity of PBMCs from 5 cohorts of subjects to produce IFN-α after viral stimulation. We concomitantly analyzed the frequency of PDCs and the levels of IFN-α transcripts within the PBMCs from the same cohorts. Results. PBMCs from patients with chronic HCV infection receiving antiviral therapy displayed a reduced capacity to release IFN-α, compared with those from healthy individuals, those from long-term responders to therapy, and those from nontreated patients. This defect was significantly correlated with the percentage of PDCs. In addition, PDCs from patients with chronic HCV infection receiving therapy displayed a reduced intrinsic capacity to produce IFN-α, which could be linked to the level of IFN-α transcripts. Conclusion. Our observations point to an effect of the therapy on either the survival or the localization of PDCs, rather than a direct detrimental effect due to the viral infection during chronic HCV infection.
Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine is Primarily Controlled by Toll-like Receptor Signalling
In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV) or subunit (SU) vaccines. The reason for this discrepancy in immunogenicity is a long-standing enigma. Here, we show that stimulation of Toll-like receptors (TLRs) of the innate immune system, in particular stimulation of TLR7, by H5N1 WIV vaccine is the prime determinant of the greater magnitude and Th1 polarization of the WIV-induced immune response, as compared to SV- or SU-induced responses. This TLR dependency largely explains the relative loss of immunogenicity in SV and SU vaccines. The natural pathogen-associated molecular pattern (PAMP) recognized by TLR7 is viral genomic ssRNA. Processing of whole virus particles into SV or SU vaccines destroys the integrity of the viral particle and leaves the viral RNA prone to degradation or involves its active removal. Our results show for a classic vaccine that the acquired immune response evoked by vaccination can be enhanced and steered by the innate immune system, which is triggered by interaction of an intrinsic vaccine component with a pattern recognition receptor (PRR). The insights presented here may be used to further improve the immune-stimulatory and dose-sparing properties of classic influenza vaccine formulations such as WIV, and will facilitate the development of new, even more powerful vaccines to face the next influenza pandemic.
Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β
Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1β is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1β. Yet, upon expression of the viral early genes, IL-1β transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1β promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1β. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1β regulation.
Evidence of Viral Replication in Circulating Dendritic Cells during Hepatitis C Virus Infection
The existence of extrahepatic sites of hepatitis C virus (HCV) replication has been proposed as a mechanism responsible for the poor antiviral immune response found in chronic infection. Dendritic cells (DCs), as unique antigen-presenting cells able to induce a primary immune response, are prime targets of persistent viruses. From 24 blood samples obtained from HCV-seropositive patients, peripheral blood DCs (PBDCs) were purified. HCV genomic sequences were specifically detected by reverse-transcription polymerase chain reaction in 6 of 24 PBDC pellets, and replicative-strand RNA also was found in 3 of 24 cell purifications. Analysis of the HCV quasi-species distribution in the PBDC population of 1 patient showed the presence of a dominant variant different from that found in plasma with respect to the primary amino-acid sequence and physicochemical profile of the hypervariable region 1 of glycoprotein E2. These data strongly suggest that PBDCs constitute a reservoir in which HCV replication takes place during natural infection
Inflammasome-independent NLRP3 function enforces ATM activity in response to genotoxic stress
NLRP3 is a pattern recognition receptor with a well-documented role in inducing inflammasome assembly in response to cellular stress. Deregulation of its activity leads to many inflammatory disorders including gouty arthritis, Alzheimer disease, and cancer. Whereas its role in the context of cancer has been mostly explored in the immune compartment, whether NLRP3 exerts functions unrelated to immunity in cancer development remains unexplored. Here, we demonstrate that NLRP3 interacts with the ATM kinase to control the activation of the DNA damage response, independently of its inflammasome activity. NLRP3 down-regulation in both broncho- and mammary human epithelial cells significantly impairs ATM pathway activation, leading to lower p53 activation, and provides cells with the ability to resist apoptosis induced by acute genotoxic stress. Interestingly, NLRP3 expression is down-regulated in non-small cell lung cancers and breast cancers, and its expression positively correlates with patient overall survival. Our findings identify a novel non-immune function for NLRP3 in maintaining genome integrity and strengthen the concept of a functional link between innate immunity and DNA damage sensing pathways to maintain cell integrity.
Oncogenic Stress is a Novel Immunogenic Signal Driven by the Unfolded Protein Response and Detected by Neutrophils
Cellular transformation is initiated by a driver mutation, resulting in the abnormal expression of an oncogene or the loss of a tumor suppressor gene in a normal cell. This event leads to oncogenic stress (OS), describing a disruption of cellular homeostasis which activates stress response pathways and transcriptomic programs that can either promote tumor development or trigger intrinsic safeguards such as senescence or apoptosis. While the immunogenicity of senescent cells is well established, the immunogenic potential of cells at the early OS stage and the mechanisms by which they are sensed by the immune system remain unknown. We developed an original in vitro OS model using primary human mammary epithelial cells to investigate this process. Our results show that OS cells display an immunoactive secretome associated with OS (SOS), as well as immunogenic membrane ligands. Intrinsically, OS cells activate the PERK and IRE1 branches of the unfolded protein response (UPR) that regulate their immunogenic features. Extrinsically, we demonstrated that neutrophils can detect OS-induced immunogenic signals, leading to their recruitment and their activation in co-culture in vitro. We validated this observation in two spontaneous murine models of breast cancer, where the earliest preneoplastic stages exhibit both UPR activation in epithelial cells and neutrophil infiltration. Altogether, our work identifies OS as the first immunogenic event in carcinogenesis and neutrophils as the first immune cell involved in immunosurveillance, paving the way for potential therapeutic approaches intercepting early steps of tumorigenesis.Competing Interest StatementThe authors have declared no competing interest.
Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1beta
Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1[beta] is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1[beta]. Yet, upon expression of the viral early genes, IL-1[beta] transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1[beta] promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1[beta]. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1[beta] regulation.