Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Gouw, Annette SH"
Sort by:
Fifty years of impact on liver pathology: a history of the Gnomes
Professional societies play a major role in medicine and science. The societies tend to be large with well-developed administrative structures. An additional model, however, is based on small groups of experts who meet regularly in an egalitarian model in order to discuss disease-specific scientific and medical problems. In order to illustrate the effectiveness of this model, the history and practices are examined of a long-standing successful example, the International Liver Pathology Group, better known as the Gnomes. The history shows that groups such as the Gnomes offer a number of important benefits not available in larger societies and nurturing such groups advances science and medicine in meaningful ways. The success of the Gnomes’ approach provides a road map for future small scientific groups.
Malignant Transformation of an HNF1a-Inactivated Hepatocellular Adenoma to Hepatocellular Carcinoma
Hepatocellular adenomas (HCA) are rare benign tumors of the liver, occurring predominantly in females using oral contraceptives. Our case describes a 66-year-old woman presenting with a palpable mass in her upper abdomen. Contrast-enhanced computed tomography and magnetic resonance imaging showed a large exophytic mass protruding from the caudal border of liver segments IV and V, without visible metastases. Laparoscopic resection of the tumor and gallbladder was performed. Histopathological examination showed a hepatocellular carcinoma with areas of HNF1a-HCA (H-HCA). This case shows that malignant transformation is possible in H-HCA. We present our preoperative decision-making process, as well as the role of imaging techniques in this rare case.
Hypothermic Oxygenated Machine Perfusion Prevents Arteriolonecrosis of the Peribiliary Plexus in Pig Livers Donated after Circulatory Death: e88521
Background Livers derived from donation after circulatory death (DCD) are increasingly accepted for transplantation. However, DCD livers suffer additional donor warm ischemia, leading to biliary injury and more biliary complications after transplantation. It is unknown whether oxygenated machine perfusion results in better preservation of biliary epithelium and the peribiliary vasculature. We compared oxygenated hypothermic machine perfusion (HMP) with static cold storage (SCS) in a porcine DCD model. Methods After 30 min of cardiac arrest, livers were perfused in situ with HTK solution (4 degree C) and preserved for 4 h by either SCS (n = 9) or oxygenated HMP (10 degree C; n = 9), using pressure-controlled arterial and portal venous perfusion. To simulate transplantation, livers were reperfused ex vivo at 37 degree C with oxygenated autologous blood. Bile duct injury and function were determined by biochemical and molecular markers, and a systematic histological scoring system. Results After reperfusion, arterial flow was higher in the HMP group, compared to SCS (251 plus or minus 28 vs 166 plus or minus 28 mL/min, respectively, after 1 hour of reperfusion; p = 0.003). Release of hepatocellular enzymes was significantly higher in the SCS group. Markers of biliary epithelial injury (biliary LDH, gamma-GT) and function (biliary pH and bicarbonate, and biliary transporter expression) were similar in the two groups. However, histology of bile ducts revealed significantly less arteriolonecrosis of the peribiliary vascular plexus in HMP preserved livers (>50% arteriolonecrosis was observed in 7 bile ducts of the SCS preserved livers versus only 1 bile duct of the HMP preserved livers; p = 0.024). Conclusions Oxygenated HMP prevents arteriolonecrosis of the peribiliary vascular plexus of the bile ducts of DCD pig livers and results in higher arterial flow after reperfusion. Together this may contribute to better perfusion of the bile ducts, providing a potential advantage in the post-ischemic recovery of bile ducts.
Tumor Vascular Morphology Undergoes Dramatic Changes during Outgrowth of B16 Melanoma While Proangiogenic Gene Expression Remains Unchanged
In established tumors, angiogenic endothelial cells (ECs) coexist next to “quiescent” EC in matured vessels. We hypothesized that angio-gene expression of B16.F10 melanoma would differ depending on the growth stage. Unraveling the spatiotemporal nature thereof is essential for drug regimen design aimed to affect multiple neovascularization stages. We determined the angiogenic phenotype—represented by 52 angio-genes—and vascular morphology of small, intermediate, and large s.c. growing mouse B16.F10 tumors and demonstrated that expression of these genes did not differ between the different growth stages. Yet vascular morphology changed dramatically from small vessels without lumen in small to larger vessels with increased lumen size in intermediate/large tumors. Separate analysis of these vascular morphologies revealed a significant difference in αSMA expression in relation to vessel morphology, while no relation with VEGF, HIF-1α, nor Dll4 expression levels was observed. We conclude that the tumor vasculature remains actively engaged in angiogenesis during B16.F10 melanoma outgrowth and that the major change in tumor vascular morphology does not follow molecular concepts generated in other angiogenesis models.