Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,706
result(s) for
"Graham, David W."
Sort by:
A Review of Phosphorus Removal Technologies and Their Applicability to Small-Scale Domestic Wastewater Treatment Systems
by
Moore, Andrew
,
Bunce, Joshua T.
,
Ofiteru, Irina D.
in
Biofilms
,
Biogas
,
decentralized systems
2018
The removal of phosphorus (P) from domestic wastewater is primarily to reduce the potential for eutrophication in receiving waters, and is mandated and common in many countries. However, most P-removal technologies have been developed for use at larger wastewater treatment plants that have economies-of-scale, rigorous monitoring, and in-house operating expertise. Smaller treatment plants often do not have these luxuries, which is problematic because there is concern that P releases from small treatment systems may have greater environmental impact than previously believed. Here P-removal technologies are reviewed with the goal of determining which treatment options are amenable to small-scale applications. Significant progress has been made in developing some technologies for small-scale application, namely sorptive media. However, as this review shows, there is a shortage of treatment technologies for P-removal at smaller scales, particularly sustainable and reliable options that demand minimal operating and maintenance expertise or are suited to northern latitudes. In view of emerging regulatory pressure, investment should be made in developing new or adapting existing P-removal technologies, specifically for implementation at small-scale treatment works.
Journal Article
Predicted Impact of Climate Change on Trihalomethanes Formation in Drinking Water Treatment
by
Werner, David
,
Graham, David W.
,
Valdivia-Garcia, Maria
in
639/166/986
,
692/499
,
704/106/694/2739/2807
2019
Quantitative predictions of impacts on public water supplies are essential for planning climate change adaptations. Monitoring data from five full-scale Scottish drinking water treatment plants (DWTPs) showed that significant correlations exist between conditionally carcinogenic trihalomethanes (THMs) levels, water temperature (r = 0.812, p = 0.0013) and dissolved organic carbon (DOC) (r = 0.892, p < 0.0001), respectively. The strong seasonality of these parameters demonstrated how climate can influence THMs formation. We quantified with laboratory experiments the sensitivity of THMs formation to changes in water temperature and DOC concentration. The laboratory data accurately reproduced real-world THM formation in the DWTPs. We then combined these validated relationships with information from the literature about future trends in mean summer temperatures and surface water DOC in the British Isles, to estimate future global warming impacts on THMs formation in DWTPs that use chlorine for disinfection. An increase in mean summer temperatures will likely increase THM formation, with a 1.8 °C temperature increase and 39% THMs increase by 2050 representing our mid-range scenario. Such an increase has major implications to potable water around the world, either an increased health risk or increased water treatment costs to maintain an equivalent quality potable supply.
Journal Article
Antibiotic Resistance Gene Abundances Correlate with Metal and Geochemical Conditions in Archived Scottish Soils
by
Hudson, Gordon
,
McCluskey, Seánín M.
,
Campbell, Colin D.
in
Agriculture
,
Antibiotic resistance
,
Antibiotics
2011
The vast majority of antibiotic resistant genes (ARG) acquired by human pathogens have originated from the natural environment. Therefore, understanding factors that influence intrinsic levels of ARG in the environment could be epidemiologically significant. The selection for metal resistance often promotes AR in exposed organisms; however, the relationship between metal levels in nature and the intrinsic presence of ARG has not been fully assessed. Here, we quantified, using qPCR, the abundance of eleven ARG and compared their levels with geochemical conditions in randomly selected soils from a Scottish archive. Many ARG positively correlated with soil copper levels, with approximately half being highly significant (p<0.05); whereas chromium, nickel, lead, and iron also significantly correlated with specific ARG. Results show that geochemical metal conditions innately influence the potential for AR in soil. We suggest soil geochemical data might be used to estimate baseline gene presence on local, regional and global scales within epidemiological risk studies related to AR transmission from the environment.
Journal Article
Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment
by
Zhu, Yong-Guan
,
Snape, Jason R.
,
Lazorchak, James M.
in
ACTIVATED-SLUDGE
,
Agriculture
,
Animal Husbandry - methods
2013
There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance.
Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic-resistance determinants via environmental pathways, with the ultimate goal of extending the useful life span of antibiotics. We also examined incentives and disincentives for action.
We focused on management options with respect to limiting agricultural sources; treatment of domestic, hospital, and industrial wastewater; and aquaculture.
We identified several options, such as nutrient management, runoff control, and infrastructure upgrades. Where appropriate, a cross-section of examples from various regions of the world is provided. The importance of monitoring and validating effectiveness of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action.
Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little or no cost. Some management options are synergistic with existing policies and goals. The anticipated benefit is an extended useful life span for current and future antibiotics. Although risk reductions are often difficult to quantify, the severity of accelerating worldwide morbidity and mortality rates associated with antibiotic resistance strongly indicate the need for action.
Journal Article
Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants
2015
Here we employed quantitative real-time PCR (qPCR) assays for polyphosphate kinase 1 (
ppk1
) and 16S rRNA genes to assess relative abundances of dominant clades of
Candidatus
Accumulibacter phosphatis (referred to Accumulibacter) in 18 globally distributed full-scale wastewater treatment plants (WWTPs) from six countries. Accumulibacter were not only detected in the 6 WWTPs performing biological phosphorus removal, but also inhabited in the other 11 WWTPs employing conventional activated sludge (AS) with abundances ranging from 0.02% to 7.0%. Among the AS samples, clades IIC and IID were found to be dominant among the five Accumulibacter clades. The relative abundance of each clade in the Accumulibacter lineage significantly correlated (p < 0.05) with the influent total phosphorus and chemical oxygen demand instead of geographical factors (e.g. latitude), which showed that the local wastewater characteristics and WWTPs configurations could be more significant to determine the proliferation of Accumulibacter clades in full-scale WWTPs rather than the geographical location. Moreover, two novel Accumulibacter clades (IIH and II-I) which had not been previously detected were discovered in two enhanced biological phosphorus removal (EBPR) WWTPs. The results deepened our understanding of the Accumulibacter diversity in environmental samples.
Journal Article
Intensified livestock farming increases antibiotic resistance genotypes and phenotypes in animal feces
2023
Animal feces from livestock farming can be a major source of antibiotic resistance to the environment, but a clear gap exists on how the resistance reservoir in feces alters as farming activities intensify. Here, we sampled feces from eight Chinese farms, where yak, sheep, pig, and horse were reared under free-range to intensive conditions, and determined fecal resistance using both genotype and phenotype approaches. Animals reared intensively exhibited increased diversity of antibiotic resistance genes and greater resistance phenotypes in feces, which were cross-correlated. Furthermore, at the metagenome contig level, antibiotic resistance genes were co-located with mobile genetic elements at a higher frequency (27.38%) as farming intensified, with associated resistance phenotypes being less coupled with bacterial phylogeny. Intensified farming also expanded the multidrug resistance preferentially carried on pathogens in fecal microbiomes. Overall, farming intensification can increase antibiotic resistance genotypes and phenotypes in domestic animal feces, with implications for environmental health.
Journal Article
Research needs for optimising wastewater-based epidemiology monitoring for public health protection
by
Zealand, Andrew M.
,
Robins, Katie
,
Jones, David L.
in
Anti-Infective Agents
,
Antimicrobial resistance
,
Chemical pollutants
2022
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Journal Article
Experimental demonstration of chaotic instability in biological nitrification
by
Bloor, Katie
,
Van Vleck, Erik S
,
Graham, David W
in
Aerobiosis
,
Ammonia
,
Ammonia - metabolism
2007
Biological nitrification (that is, NH3 → NO2− → NO3−) is a key reaction in the global nitrogen cycle (N-cycle); however, it is also known anecdotally to be unpredictable and sometimes fails inexplicably. Understanding the basis of unpredictability in nitrification is critical because the loss or impairment of this function might influence the balance of nitrogen in the environment and also has biotechnological implications. One explanation for unpredictability is the presence of chaotic behavior; however, proving such behavior from experimental data is not trivial, especially in a complex microbial community. Here, we show that chaotic behavior is central to stability in nitrification because of a fragile mutualistic relationship between ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), the two major guilds in nitrification. Three parallel chemostats containing mixed microbial communities were fed complex media for 207 days, and nitrification performance, and abundances of AOB, NOB, total bacteria and protozoa were quantified over time. Lyapunov exponent calculations, supported by surrogate data and other tests, showed that all guilds were sensitive to initial conditions, suggesting broad chaotic behavior. However, NOB were most unstable among guilds and displayed a different general pattern of instability. Further, NOB variability was maximized when AOB were most unstable, which resulted in erratic nitrification including significant NO2− accumulation. We conclude that nitrification is prone to chaotic behavior because of a fragile AOB–NOB mutualism, which must be considered in all systems that depend on this critical reaction.
Journal Article
Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria
by
Baslé, Arnaud
,
Dennison, Christopher
,
Firbank, Susan J
in
amino acid composition
,
amino acid sequences
,
Amino acids
2012
Methane-oxidizing bacteria are nature’s primary biological mechanism for suppressing atmospheric levels of the second-most important greenhouse gas via methane monooxygenases (MMOs). The copper-containing particulate enzyme is the most widespread and efficient MMO. Under low-copper conditions methane-oxidizing bacteria secrete the small copper-binding peptide methanobactin (mbtin) to acquire copper, but how variations in the structures of mbtins influence copper metabolism and species selection are unknown. Methanobactins have been isolated from Methylocystis strains M and hirsuta CSC1, organisms that can switch to using an iron-containing soluble MMO when copper is limiting, and the nonswitchover Methylocystis rosea. These mbtins are shorter, and have different amino acid compositions, than the characterized mbtin from Methylosinus trichosporium OB3b. A coordinating pyrazinedione ring in the Methylocystis mbtins has little influence on the Cu(I) site structure. The Methylocystis mbtins have a sulfate group that helps stabilize the Cu(I) forms, resulting in affinities of approximately 1021 M-1. The Cu(II) affinities vary over three orders of magnitude with reduction potentials covering approximately 250 mV, which may dictate the mechanism of intracellular copper release. Copper uptake and the switchover from using the iron-containing soluble MMO to the copper-containing particulate enzyme is faster when mediated by the native mbtin, suggesting that the amino acid sequence is important for the interaction of mbtins with receptors. The differences in structures and properties of mbtins, and their influence on copper utilization by methane-oxidizing bacteria, have important implications for the ecology and global function of these environmentally vital organisms.
Journal Article
Strategic Approach for Prioritising Local and Regional Sanitation Interventions for Reducing Global Antibiotic Resistance
by
Giesen, Myra J.
,
Bunce, Joshua T.
,
Graham, David W.
in
antibiotic resistance
,
antibiotics
,
Cambodia
2019
Globally increasing antibiotic resistance (AR) will only be reversed through a suite of multidisciplinary actions (One Health), including more prudent antibiotic use and improved sanitation on international scales. Relative to sanitation, advanced technologies exist that reduce AR in waste releases, but such technologies are expensive, and a strategic approach is needed to prioritize more affordable mitigation options, especially for Low- and Middle-Income Countries (LMICs). Such an approach is proposed here, which overlays the incremental cost of different sanitation options and their relative benefit in reducing AR, ultimately suggesting the “next-most-economic” options for different locations. When considering AR gene fate versus intervention costs, reducing open defecation (OD) and increasing decentralized secondary wastewater treatment, with condominial sewers, will probably have the greatest impact on reducing AR, for the least expense. However, the best option for a given country depends on the existing sewerage infrastructure. Using Southeast Asia as a case study and World Bank/WHO/UNICEF data, the approach suggests that Cambodia and East Timor should target reducing OD as a national priority. In contrast, increasing decentralized secondary treatment is well suited to Thailand, Vietnam and rural Malaysia. Our approach provides a science-informed starting point for decision-makers, for prioritising AR mitigation interventions; an approach that will evolve and refine as more data become available.
Journal Article